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Abstract

The paper concerns identification of the Wiener system consisting of a linear subsystem followed by a static nonlinearityf (·) with
no invertibility and structure assumption. Recursive estimates are given for coefficients of the linear subsystem and for the valuef (v) at
any fixedv. The main contribution of the paper consists in establishing convergence with probability one of the proposed algorithms to
the true values. This probably is the first strong consistency result for this kind of Wiener systems. A numerical example is given, which
justifies the theoretical analysis.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The Hammerstein andWiener systems, in particular, their
identification issue have attracted a great attention from
researchers because of their importance in applications.
Since these systems are nonlinear, the identification meth-
ods demonstrated byChen & Guo (1991)andLjung (1987)
are not directly applicable.
A linear system cascaded with a static nonlinearity is

called theWiener (or Hammerstein) system if the nonlinear-
ity follows (or is followed by) the linear subsystem. This pa-
per concerns with identification of the SISO Wiener system
presented inFig. 1whereuk is the one-dimensional system
input to be designed,vk is the output of the linear subsys-
tem serving as the input of the memoryless nonlinear block,
andyk is the system output which is observed with additive
noise�k. The coefficients of the linear subsystem and the
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nonlinear functionf (·) are unknown. The problem is how to
estimate coefficients contained in the linear subsystem and
the static nonlinearityf (·) on the basis of observation{zk}
and the adequately designed input{uk}, where
zk = yk + �k. (1)

The name Wiener model probably comes from the famous
book byWiener (1958), where the nonlinearity is expanded
to the functional series and the correlation analysis is carried
out by using the Gaussian input. Based on the method pro-
posed byWiener (1958)there were many works on analysis
and identification of nonlinear systems in 1960s and 1970s.
Among early works on identification of Wiener systems, a
practical nonparametric algorithm is proposed byBillings
& Fakhouri (1978)where no inversion of the nonlinearity is
required.
For characterizing the nonlinearity the parametric ap-

proach (Bendat, 1999; Hasiewicz, 1987; Hunter & Koren-
berg, 1986; Nordsjö & Zetterberg, 2001; Pajunen, 1992;
Verhaegen & Westwick, 1996; Vörös, 2001; Westwick &
Kearney, 1992; Wigren, 1993, 1994) is mostly applied in
literature, but the nonparametric approach is also considered
(Billings & Fakhouri, 1978; Greblicki, 1997, 2001).
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Fig. 1. Wiener system.

When the parametric approach is applied, the nonlinearity
is presented either as a linear combination of known func-
tions with unknown coefficients (Hasiewicz, 1987; Hunter
& Korenberg, 1986; Nordsjö & Zetterberg, 2001; Westwick
& Kearney, 1992) or as a piecewise linear function (Pajunen,
1992; Vörös, 2001; Wigren, 1993). In this case, the parame-
ter estimates may be derived by minimizing some specially
designed loss function, and this can be realized by using any
optimizing algorithm for data with fixed sample size. Pro-
ceeding in this way, the parameters cannot be updated online
as can be seen inVörös (2001). Nevertheless, the estimates
may still be made recursive and even with certain kind of
convergency, if rather restrictive conditions are imposed as
demonstrated byWigren (1993, 1997, 1998)the nonlinear
function is assumed to be known.
When the nonparametric approach is considered, the non-

linear function is usually required to be invertible (Greblicki,
1997, 2001), and the argumentv for any givenu = f (v)

rather thanf (v) for any givenv is estimated. This may
limit applications of corresponding identification methods
in practice by the following consideration: saturations are
not invertible, but they quite often exist in practical sys-
tems and affect the measured outputs; also, inversion of
the nonlinearity can lead to severe amplification of possible
measurement disturbances as pointed out byWigren (1993),
etc.
The goal of this paper is to recursively estimate the coef-

ficients of the linear subsystem and the valuef (v) for any
givenv without requiring invertibility off (·). The estimates
are required to be strongly consistent, i.e., to converge to
the true values with probability one. A similar problem for
Hammerstein systems is solved byChen (2004)by using
stochastic approximation (SA) algorithms with expanding
truncations (Chen, 2002). There the input is designed to be
a sequence of bounded iid random variables, andf (·) is es-
timated with the help of a kernel function applied to the SA
algorithm.
Let us explain why SA is an appropriate tool to deal with

the identification problem. When estimating an unknown
parameterϑ on the basis of observation data denoted by
{gk}, one can always transform this to a SA problem, i.e.,
to a root-seeking problem for any functiong(·) with rootϑ,
e.g.,g(x) = −(x − ϑ). This is becausegk+1 can always be
written asgk+1 = g(xk) + �k+1 with �k+1� gk+1 − g(xk),
wherexk denotes thekth estimate forϑ. In other words, the
observation data{gk} can be viewed as a noisy observation
on g(xk) with additive noise�k.

It is natural to come to the idea: to solve the stated prob-
lem for Wiener systems by using SA algorithms with ex-
panding truncations and with kernel functions. However,
in doing so, there is an essential difference in analysis for
Wiener systems from that for Hammerstein systems. To ex-
plain this, we note that the analysis given byChen (2004)is
essentially based on two facts: (1) The correlation function
between the input and output of the system has a simple
analytic expression connecting parameters to be estimated;
(2) All signals passing through the system are bounded
when the input is bounded. As shown byChen (2004), for
Hammerstein systems a sequence of bounded iid random
variables serving as the system input results in these two
properties.
For Wiener systems, though a bounded input still implies

the boundedness of all signals in the system, the correlation
function between the input and output of the system, in gen-
eral, does not have a simple analytic expression. This hints
us to take an iid Gaussian random variables to serve as the
system input. However, the Gaussian random variable is un-
bounded, and hence the Gaussian input may give rise to the
unboundedness of signals in the system. This explains why
the analysis method given byChen (2004)cannot directly
be applied to the present case.
The requirement for boundedness of signals passing

through the system can also be explained by the following
intuitive observation. To estimatef (v) it is important to
recover the inputvk of the nonlinear function. The estimate
for vk, denoted bŷvk, is obtained as the output of the esti-
mated linear subsystem, which means the subsystem with
coefficients replaced by their estimates. However,v̂k may
not be close tovk even if the estimates for coefficients of
the linear subsystem are sufficiently accurate, when{uk} is
unbounded.
To overcome this difficulty, we proceed as follows. While

the system input{uk} is taken to be a sequence of iid Gaus-
sian random variables, not alluk but only suchr + 1 suc-
cessiveuk that are bounded by a given constant are used
to estimatevk, where r is the order of the linear subsys-
tem. This selection guarantees that{vk} generated by sets of
r + 1 successive boundeduk is bounded. Since the selec-
tion depends on sample paths, we have to use the concept of
stopping time, which is well developed in probability theory
(see, e.g.,Chow & Teicher (1978)).
The rest of the paper is organized as follows. The sys-

tem considered in the paper and conditions imposed on
the system are given in Section 2. Also, the basic re-
sults of SA used in the paper are described in Section 2.
The recursive identification algorithms and their strong
consistency for estimating the linear subsystem and the
nonlinear block are, respectively, presented in Sections 3
and 4. A numerical example is demonstrated in Section 5
and some concluding remarks are given in Section 6. The
mathematical details concerning the properties of stopping
times and the behaviors of kernel functions are given in
Appendix.
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