Accepted Manuscript

Cobalt oxide nanorods with special pore structure for enhanced ethanol sensing performance

Dongmei Han, Ye Ji, Fubo Gu, Zhihua Wang

PII: DOI: Reference:	S0021-9797(18)30820-8 https://doi.org/10.1016/j.jcis.2018.07.064 YJCIS 23855
To appear in:	Journal of Colloid and Interface Science
Received Date:	4 May 2018
Revised Date:	13 July 2018
Accepted Date:	17 July 2018

Please cite this article as: D. Han, Y. Ji, F. Gu, Z. Wang, Cobalt oxide nanorods with special pore structure for enhanced ethanol sensing performance, *Journal of Colloid and Interface Science* (2018), doi: https://doi.org/ 10.1016/j.jcis.2018.07.064

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Cobalt oxide nanorods with special pore structure for enhanced

ethanol sensing performance

Dongmei Han, Ye Ji, Fubo Gu, Zhihua Wang*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

*Corresponding author: **Zhihua Wang.** Tel.: +86-10-64445927.

E-mail address: zhwang@mail.buct.edu.cn

CC

Abstract: Cobalt oxide (Co₃O₄) nanorods with special pore structure were successfully synthesized by a facile hydrothermal method with proper temperature calcination. The relationship between morphologies, structures and gas sensing properties under different calcination temperature were investigated by using XRD, SEM, TEM and XPS method. The Co₃O₄ sample calcinated at 300 °C displayed the highest response of 143 and fast response/ recovery time to 100 ppm ethanol at relatively low operating temperature of 185°C. The mechanism for enhanced gas sensing performances of Co₃O₄ nanorods to ethanol could be attributed to the large specific surface area and abundant pore structure through the unique Co₃O₄ nanorods. The particular surface components under the proper calcination temperature are also the possible reasons for such excellent sensing performances.

Keywords: Co_3O_4 nanorods; pore structure; calcination temperature; ethanol sensing performance.

Download English Version:

https://daneshyari.com/en/article/6989017

Download Persian Version:

https://daneshyari.com/article/6989017

Daneshyari.com