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Abstract

Iterative learning control (ILC) based on minimization of a quadratic criterion in the control error and the input signal is
considered. The focus is on the frequency domain properties of the algorithm, and how it is able to handle non-minimum phase
systems. Experiments carried out on a commercial industrial robot are also presented. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The purpose of this paper is to show some new aspects
of an ILC algorithm derived using optimization. Parts of
the results presented here can also be found in Gunnar-
sson and NorrloK f (1999). The general setup is of standard
ILC type, i.e. the system to be controlled is carrying out
the same operation repeatedly, the desired operation is
carried out during a "nite time interval and the purpose
of ILC is to obtain good servo properties. General
introductions to the area of ILC are given in e.g. Moore
(1993, 1998), and a collection of recent results is found in
Bien and Xu (1998). More speci"cally, this paper deals
with ILC applied to linear SISO systems working in
discrete time. The general system description will then be
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where u
�
(t) and y

�
(t) denote the ILC input signal and the

output signal, respectively. Furthermore, r(t) denotes the
desired output (reference) signal. The subscript k denotes
iteration number. The reference signal is the same in all
iterations while the other signals will change from iter-
ation to iteration. All signals are de"ned on a "nite time

interval t"0,2,N. Finally, ¹
�
(q) and ¹
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discrete time "lters, where q denotes the shift operator.
The formulation in Eq. (1) is taken fromNorrloK f (2000),

and it covers a wide class of situations ranging from an
open loop control problem to a closed loop system oper-
ating under both feed-back and feed-forward control as
depicted in Fig. 1, where the signal u

�
(t) represents a

signal added to the signals normally generated in the
control system. ILC is used as a complement to the
conventional robot control system. A slight modi"cation
of the system structure shown in Fig. 1 is to let the ILC
input signal be used as a feed-forward signal to the
control signal generated by the feed-back and feed-
forward parts of the controller. This just corresponds to
a rede"nition of the transfer operator ¹

�
(q) in Eq. (1).

The fundamental problem in ILC is to design an up-
date algorithm for the input signal u

�
(t) such that the

error e
�
(t)"r(t)!y

�
(t) is minimized in some appropriate

sense. A general updating equation is given by

u
���
(t)"Q(q)(u

�
(t)#¸(q)e

�
(t)), (2)

where Q(q) and ¸(q) are linear, possibly non-causal,
"lters. The choice of Q(q) and ¸(q) is the main issue in the
design of an ILC algorithm. The aim in this paper is to
show that an ILC algorithm derived using optimization
can be seen as a particular choice of the "lters ¸(q) and
Q(q). The paper is organized as follows. In Section 2, an
ILC algorithm is derived using optimization. Then in
Section 3, it is shown how this type of ILC algorithm can
deal with non-minimum phase systems. In Section 4, the
frequency domain properties of the algorithm are investi-
gated and in Section 5, the ILC algorithm is applied to an
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Fig. 1. An example of a realization of the system in Eq. (1).

industrial robot with good results. Finally, some con-
clusions are given in Section 6.

2. ILC using optimization

The optimization approach to ILC is well known, and
previous contributions can be found in e.g. Gorinevsky,
Torfs, and Goldenberg (1995), Frueh and Phan (1998),
Lee, Lee, and Kim (2000), and Amann, Owens, and
Rogers (1995). The aim of this paper is to investigate
some speci"c aspects of this approach, namely the inter-
pretation of the algorithm in the frequency domain, the
ability to handle non-minimum phase systems, and the
use in experiments on a real robot. Introduce the vectors
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, where k denotes the iteration number

and t"0,2,N denote the sampling points. Using these
notations the system can be described by the equation
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where T
�
is a matrix formed by the impulse response

coe$cients of the transfer operator ¹
�
(q), i.e.
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and T
�
is de"ned analogously. In (6), it is also assumed

that the initial conditions are zero, i.e. that y
�
(t)"0 for

t(0. In Eq. (7) the matrix elements along the diagonals
are constant but this is not necessary. In case the system
is time varying in the sense that the dynamics change
during one iteration it is straightforward to let the coe$-
cients in T

�
vary along the diagonals. It is however,

assumed that the same T
�
is valid in each iteration, i.e.

slow changes in the system to be controlled are not
covered. For completeness the diagonal element t

�
is

included, but the discussion is not restricted to this case.
The discussion here is restricted to SISO systems. Optim-
ization based LIC in the MIMO case is dealt with in e.g.
Lee et al. (2000). The matrices in Eq. (6) will depend on
the structure of the control system. The work presented
here represents a situation when the system is controlled
using feed-forward and feed-back according to Fig. 1.
The matrices in Eq. (6) are then given by
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where F and F
�
are the matrices corresponding to the

feed-back and feed-forward transfer operators.
The idea is now to determineU

���
such that the error

E
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becomes as small as possible by minimizing the

criterion

J"E�
���
W

�
E
���

#U�
���
W

�
U

���
, (9)

where W
�
and W

�
are positive de"nite weight matrices

determining the trade o! between performance and input
energy. The weight matrices can be used for both time
and frequency weighting but this possibility will not be
exploited here. An example of the use of non-diagonal
weighting matrices is presented in Chapter 15 of NorrloK f
(2000). The criterion is minimized, subject to the
constraint
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Introduction of a Lagrange multiplier, di!erentiation,
and use of the expression
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where T
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denotes a nominal model, gives

U
���

"(W
�
#� ) I#T�

�
W

�
T

�
)��

(�U
�
#T�

�
W

�
(I!T

�
)R), (12)

which can be reformulated into
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The updating matrices Q and L hence depend on the
nominal model T

�
and the weight matricesW

�
and W

�
.

The Lagrange multiplier � is not computed explicitly but
instead used as a design variable. By puttingW

�
"0, i.e.
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