Accepted Manuscript

Durable superhydrophobic and superoleophilic electrospun nanofibrous membrane for oil-water emulsion separation

Wenjing Ma, Juntao Zhao, Olayinka Oderinde, Jingquan Han, Zhongche Liu, Buhong Gao, Ranhua Xiong, Qilu Zhang, Shaohua Jiang, Chaobo Huang

PII: S0021-9797(18)30715-X

DOI: https://doi.org/10.1016/j.jcis.2018.06.067

Reference: YJCIS 23758

To appear in: Journal of Colloid and Interface Science

Received Date: 14 April 2018 Revised Date: 21 June 2018 Accepted Date: 23 June 2018

Please cite this article as: W. Ma, J. Zhao, O. Oderinde, J. Han, Z. Liu, B. Gao, R. Xiong, Q. Zhang, S. Jiang, C. Huang, Durable superhydrophobic and superoleophilic electrospun nanofibrous membrane for oil-water emulsion separation, *Journal of Colloid and Interface Science* (2018), doi: https://doi.org/10.1016/j.jcis.2018.06.067

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Durable superhydrophobic and superoleophilic electrospun nanofibrous membrane for oil-water emulsion separation

Wenjing Ma¹, Juntao Zhao¹, Olayinka Oderinde², Jingquan Han⁴, Zhongche Liu¹, Buhong Gao⁵, Ranhua Xiong³, Qilu Zhang⁶, Shaohua Jiang³, Chaobo Huang^{1,7*}

¹College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China

²School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing 211189, P. R. China

³Lab General Biochemistry & Physical Pharmacy, Department of Pharmaceutics, Ghent University, Belgium

⁴College of Materials Science and Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China

⁵Advanced Analysis & Testing Center, Nanjing Forestry University, Nanjing 210037, P. R. China

⁶School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China

⁷Laboratory of Biopolymer based Functional Materials, Nanjing Forestry University, Nanjing, 210037, P. R. China

Email: Chaobo.Huang@njfu.edu.cn.

Abstract

Marine pollution and industrial wastewater have caused serious environmental pollution, thereby resulting into an alarming damage to public health in the past decades, hence the high demand for, cost effective, energy-efficient oil-water separation technologies for the removal of oil contaminants from such water. Herein, we report a facile method to fabricate superhydrophobic/superoleophilic membrane

Download English Version:

https://daneshyari.com/en/article/6989234

Download Persian Version:

https://daneshyari.com/article/6989234

<u>Daneshyari.com</u>