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a b s t r a c t

This paper presents a method to design a reduced order observer using an invariant manifold approach.
The main advantages of this method are that it enables a systematic design approach, and (unlike most
nonlinear observer design methods), it can be generalized over a larger class of nonlinear systems. The
method uses specific mapping functions in a way that minimizes the error dynamics close to zero.
Another important aspect is the robustness property which is due to the manifold attractivity: an im-
portant feature when an observer is used in a closed loop control system. A two degree-of-freedom
system is used as an example. The observer design is validated using numerical simulation. Then ex-
perimental validation is carried out using hardware-in-the-loop testing. The proposed observer is then
compared with a very well known nonlinear observer based on the off-line solution of the Riccati
equation for systems with Lipschitz type nonlinearity. In all cases, the performance of the proposed
observer is shown to be very high.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For nonlinear systems the theory of linear observer design has
been extended e.g. extended Luenburger observer (Price & Cook,
1982; Zeitz, 1987) or extended Kalman filter (Boutayeb & Aubry,
1999; Mercorelli, 2012). As a result estimation is limited to a small
domain and requires high computation power. Thau (1973) and
then Kou, Elliott, and Tarn (1975) were the first to attempt non-
linear techniques for the observer design. Since then a lot of work
has been done on the observer design using nonlinear theory but
mostly limited to certain classes of system that cannot typically be
generalized to other classes of systems.

The observers based on Lyapunov theory give sufficient con-
ditions for the existence of the observer for nonlinear systems
(Chaoui, Golbon, Hmouz, Souissi, & Tahar, 2015; Nikoobin & Ha-
ghighi, 2009; Vaclavek & Blaha, 2005). It may be possible for the
low order nonlinear systems to satisfy the conditions presented in
the theorems based on Lyapunov theory but it is very difficult to
find higher order nonlinear systems that can satisfy those condi-
tions (Lageman, Mahony, & Trumpf, 2008). The observers based on
extended linearization techniques linearize the error dynamics

through a nonlinear output injection function (Huang, Xu, Han, &
Lam, 2001; Li, Yang, Chen, & Chen, 2012; Talole, Kolhe, & Phadke,
2010). This type of observer functions locally at a fixed point and
for multi-input multi-output systems the design methodology can
be very complicated.

For nonlinear observers, designs based on Lie-algebraic theory
have also been used in the literature (Lageman et al., 2008, 2010;
Maithripala et al., 2004). In these techniques, the problems linked
with nonlinear observer design have been dealt with by using
linear techniques that exploit linear observer theory. One of the
advantages of using Lie-algebraic theory over the extended line-
arization techniques is that in the former case the observer is valid
in any region where the transformation exists, whereas in the
latter case the observer is designed at a fixed point. This method
can also be used to design observer for multi-input multi-output
systems. The down side of this technique is that the nonlinear
system must satisfy a non-generic condition along with the
finding of a necessary state transformation, which is not an easy
task.

Generally there are two ways to deal with observer design in
nonlinear systems (Astolfi, Karagiannis, & Ortega, 2007). If the
system nonlinearities are a linear function of unmeasured states or
are monotonic, then observers based on linear theory can be used,
or passivity can be exploited. Alternatively, the observer requires
the existence of an attractive and invariant manifold. These types
of observers comprise a linear filter and nonlinear output mapping
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functions. The theory of sliding mode has also been used to design
observers for both linear and nonlinear systems (Edwards & Tan,
2006; Nollet, Floquet, & Perruquetti, 2008).

The observer design in the sliding mode methodology re-
sembles the one proposed in this paper up to the extent of de-
fining an asymptotically stable surface. In the sliding mode ob-
server, the sliding surface is defined in terms of the error between
the estimated and known states and a discontinuous/switching
function is defined to bring the error dynamics to the sliding
surface (Edwards, Spurgeon, Tan, & Patel, 2007; Perruquetti &
Barbot, 2002; Slotine, Hedrick, & Misawa, 1987), whereas in the
proposed approach the observer design is reduced to make the
error dynamics asymptotically stable, which depends on the de-
finition of some mapping functions. The sliding mode observer is
known for its insensitivity to parameter variation and disturbance
rejection but the observer matching condition restricts the ap-
plicability of the sliding mode observer and the system has to be
minimum phase (Fridman, Shtessel, Edwards, & Yan, 2008; Kalsi,
Lian, Hui, & Zak, 2009). This means that all the zeros of the system
should be on the left hand side, or in other words the internal
dynamics of the system need to be stable for the design
of first order sliding mode observer. To overcome this issue higher
order sliding mode observers are proposed (Floquet & Barbot,
2006; Fridman, Levant, & Davila, 2007). However, the technique
proposed in the present contribution could be extended, in a si-
milar fashion for non-minimum phase systems (Astolfi et al.,
2007).

Mainly there are two types of sliding mode observers. The type
based on equivalent control methods are Utkin observers and the
type based on Lyapunov methods are Walcott and Zak observers
(Walcott & Zak, 1986). The Utkin sliding mode observer (Drakunov
& Utkin, 1995) does not have a static observer gain. The dis-
advantage of not having a static observer gain is that the state
estimation can be performed only with the bounded error and not
asymptotically. The Walcott and Zak observer has a static observer
gain and the error is reduced based on system uncertainty. An-
other disadvantage of traditional sliding mode observers is high
frequency switching action.

In Zhu and Han (2002), Zhang, Su, Wang, and Han (2012), Ze-
mouche, Boutayeb, and Bara (2008), and Ha and Trinh (2004) the
observer designs based on the solution of the Riccati equation are
proposed for systems with Lipschitz type nonlinearity. In all
these papers, to check the validity of the observer, the only
test performed is that different initial conditions are given to the
actual system and it is shown that the observer is converging.
There is no discussion about the robustness of the observers
against parameter variation, measurement noise or external dis-
turbance. In this paper in addition to the initial condition test,
both the proposed observer and the observer based on the
off-line solution of the Riccati equation are tested for robustness
against parameter variation, measurement noise and external
disturbance.

The theory for observer developed by Astolfi et al. (2007) has
been implemented on many systems, such as ball and beam sys-
tem, range estimation in a vision system and magnetic levitation
system. The present contribution builds upon these previous stu-
dies by demonstrating application of the observer to a real me-
chanical system both in open loop and closed loop, so that the
robustness to parameter variation, external disturbance and
measurement noise can be explored for the first time. Therefore,
the idea presented by Astolfi et al. is further extended to systems
with nonlinear stiffness. In this work a reduced order observer
using the notion of an invariant manifold has been designed for a
2-DOF mass–spring–damper system to estimate the displacement
and velocity of one of the masses. In addition a comparative study
is presented with a very well known observer based on the off-line

solution of the Riccati equation for systems with Lipschitz type
nonlinearity.

The approach presented in this paper requires the existence
of a manifold that is invariant and attractive (Astolfi,
Ortega, & Venkatraman, 2010; Besancon & Ticlea, 2007; Kar-
agiannis, Carnevale, & Astolfi, 2008; Khan & Dhaouadi, 2015;
Morbidi, Mariottini, & Prattichizzo, 2010). The manifold
is made invariant by a nonlinear filter and attractive by
proper selection of mapping functions. To prove the validity
of the proposed observer, it is compared with a very well
known nonlinear observer based on Lipschitz type non-linearity
presented in Raghavan and Hedrick (1994), which is based
on the off-line solution of the Riccati equation. The reason for this
comparison is that the system under consideration has a Lipschitz
type nonlinearity. The result is that both observers show sa-
tisfactory results under normal conditions, but the proposed new
observer is more robust to parameter variation and phase change
in the excitation signal. Finally the proposed reduced order ob-
server is tested in a closed loop with a hybrid active and semi-
active controller to demonstrate the practical utility of the
technique.

The details of the proposed observer design are given in Section
2. In Section 3 we introduce the example system that will be used
throughout this paper. The proposed observer design is applied to
the example system in Section 4. In Section 5 an observer based on
Lipschitz type nonlinearity is designed for the same example
system. Comparison results for both observers are given in Section
6. In Section 7 the experimental system is described and then the
experimental results are presented, followed by further discussion
in Section 8.

2. Proposed observer design methodology

Consider a nonlinear, time-varying system described as

η η̇ = ( ) ( )f y t, , , 1

η̇ = ( ) ( )y h y t, , , 2

where η ∈ n is the unmeasured state, ∈y m is the measurable
output, an over-dot represents differentiation with respect to time,

η( )f y t, , and η( )h y t, , are nonlinear functions. It is assumed that
η( )f y t, , and η( )h y t, , are forward complete, i.e. trajectories

starting at time t0 are defined for all times ≥t t0.
Let η̂ ∈ p represent the observer state, and ≥p n. From this,

the total number of states of the system is +p n.
Then the dynamical system

η α η^ ̇ = (^ ) ( )y t, , , 3

is called an observer for the system (1)–(2), if there exist mappings

     β ϕ× × → →: , : ,p m p n p

with ϕ left invertible, such that the manifold

  { }( ) ( ) ( )η η β η ϕ η= ^ ∈ × × ^ = ( )y y t, , : , , , 4t
n m p

has the following properties (Astolfi et al., 2007):

1. All trajectories of the extended system (1)–(3) that start on the
manifold t at time t remain there for all future times, τ > t i.e.

t is positively invariant.
2. All trajectories of the extended system (1)–(3) that start in a

neighborhood of t asymptotically converge to t .
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