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a b s t r a c t

Linear Repetitive Control has proven to be an effective strategy to compensate for periodic disturbances
in mechatronic systems that operate at constant speed; however, it renders very poor performance in
varying speed applications. In this work, a Repetitive Controller based on a Generalized Proportional
Integral (GPI) observer under Active Disturbance Rejection approach is presented and formulated in
spatial domain. The inclusion of the linear GPI observer makes possible to see the spatial non-linear
system as a simplified linear one by means of an on-line estimated unified disturbance term.
Experimental results show that the presented linear approach successfully rejects periodic disturbances
under varying speed conditions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Mechatronic rotary systems are exposed to many kinds of
disturbances. Due to the nature of the these systems, periodic
disturbances are one of the most common type of disturbances.
They appear mainly because of eccentricities, axis unbalance, mass
non-uniformity, couplings or pulsating torques.

To deal with the periodic disturbance rejection problem, well
established control strategies as Repetitive Control (RC) (Wang, Gao,
& Doyle, 2009) and Adaptive Feedforward Cancelation (AFC) (Messner
& Bodson, 1994) have proven to be very effective. These strategies are
based on the Internal Model Principle (IMP) (Francis & Wonham,
1976), which states that in order to track/reject an exogenous signal,
the model of such signal must be included in the control loop. Both RC
and AFC assume the exact knowledge of the signal frequency since
this information is included in the internal model of the signal. If the
mechatronic system speed remains constant the frequency of the
disturbance is also constant and the above-mentioned techniques can
be applied successfully. However, if the rotational speed changes, the
frequency would change proportionally which causes that RC drasti-
cally loses its performance (Chew & Tomizuka, 1990; Steinbuch, 2002).
To allow RC operate properly at varying speed, somemodifications can
be made: (1) Include an adaptive system inwhich the frequency of the
internal model varies according to the signal frequency (speed). In this
way, the system needs a frequency estimator and becomes a variable
structure system (Hu, 1992; Tsao, Qian, & Nemani, 2000) which

complicates the stability analysis. (2) Employ high order internal
models to provide robustness against frequency changes, which is
known as High Order Repetitive Control (HORC) (Steinbuch, Weiland,
& Singh, 2007). The main drawbacks of HORC are that the order of the
controller is very large and only small frequency changes are allowed.
(3) Implement a digital system that adjusts the sampling frequency
according to the speed changes (Olm, Ramos, & Costa-Castelló, 2010),
in order to keep constant the number of samples per period of the
disturbance signal. This allows larger frequency changes but involves a
more complex stability analysis since the control system is a Linear
Time Varying system (Olm, Ramos, & Costa-Castelló, 2011).

All above-mentioned strategies are formulated in time domain;
however, the Spatial Repetitive Control (SRC) approach presented in
Chen and Yang (2007) uses the angular position instead of time as the
independent variable. The main idea behind spatial RC is that the
disturbances generated in mechatronic systems are position depen-
dent disturbances (those coming from eccentricities, axis unbalance,
mass non-uniformity, coupling torques, etc.). Thus, the rotation of the
mechanisms generates a disturbance that in the time domain has a
frequency that varies proportionally with angular speed but in the
spatial domain the frequency of disturbance remains invariant. As a
consequence, a RC strategy in which the frequency of the disturbance
is assumed fixed can be applied naturally if the position domain is
used instead of time. An implication of this change of variable is that
the system representation is now a nonlinear one which augments the
complexity of the controller design. In general, a feedback linearization
technique is employed and once a lineal model is obtained the lineal
RC can be applied as usual (Quan & Cai, 2010). However, feedback
linearization usually needs to be complemented with an additional
robustifying technique in order to facilitate its practical implementa-
tion. Adaptive techniques as described in Chen and Yang (2009) and
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Yang and Chen (2011) are used with this purpose. These nonlinear
techniques increase importantly the complexity of the control system.
Furthermore, the control platform requires a spatial clock, usually an
incremental encoder, to run the algorithm in spatial domain which
yields a more complex control structure compared with its time
domain counterpart.

In this paper a spatial observer-based repetitive controller for
mechatronic systems is presented. The strategy is founded on the
Proportional Integral Generalized (GPI) observer-based control
approach (Sira-Ramírez, Luviano-Juárez, & Cortés-Romero, 2011)
which is in line with the Active Disturbance Rejection (ADR) proposal
(Radke & Gao, 2006; Tian & Gao, 2009). In this methodology,
exogenous disturbances, unmodeled dynamics, non-linearities and
parameter uncertainties are grouped in an unified disturbance term.

In the proposal presented here, a completely linear strategy is
formulated which can deal with the nonlinear system and periodic
disturbances in a robust way. The linear nature of the controller
provides by itself a high level of simplicity compared with the above-
mentioned strategies. In this way, the nonlinear dynamic compo-
nents of the position domain plant representation are estimated on-
line using a GPI observer. This estimation is then added to the control
law, thus simplifying the controller design to a linear feedback
strategy that uses the IMP to achieve rejection of periodic distur-
bances. The resulting control scheme requires a well defined number
of parameters to be tuned through a simple algebraic structure. The
control system design has two stages: firstly a GPI observer is
designed with enough bandwidth to compensate for system non-
linearities, this design is based on constructing a Luenberger-type
observer for an extended model plant. Secondly, the RC is added to
the control loop where the parameters needed to establish perfor-
mance and stability are tuned in an algebraic fashion.

GPI controllers have been successfully tested in mechatro-
nic systems (Luviano-Juárez, Cortés-Romero, & Sira-Ramírez,
2009) as well as in induction motor control (Cortés-Romero,
Luviano-Juárez, & Sira-Ramírez, 2010). Here we use this tech-
nique in spatial domain combined with the rejection of
periodic disturbances in a rotary mechatronic control system
application in a discrete position framework. In this way, the
presented control system simplifies the above-mentioned
existing strategies since this constitutes a completely linear
design and does not need any adaptive mechanism or fre-
quency estimation.

This paper is organized as follows: Section 2 describes the plant
system model, its spatial domain representation and a simplified
linear model expression. Section 3 presents the GPI observer for the
obtained model. In Section 4 the RC based on the GPI observer is
described and also a brief explanation of the conventional RC is
included. Section 6 shows the experimental results and conclusions
are presented in Section 7. Finally, a prove of the Theorem 1, related to
the observer error estimation bound, is presented in the Appendix.

2. Spatial domain system representation

This section presents the system transformation from time
domain to spatial domain. The proposed methodology is applic-
able to SISO linear and nonlinear differentially flat systems of any
order (see Sira-Ramírez & Agrawal, 2004).

2.1. General model

A general system model can be represented by the following n-
order differential equation:

dn

dtn
yðtÞþan�1

dn�1

dtn�1yðtÞþ⋯þa1
d
dt
yðtÞþa0yðtÞþΦt ¼ b0uðtÞ; ð1Þ

where u(t) is the system input, y(t) is the flat system output and Φt

are external disturbances and nonlinearities that depend on
t; d

n� 1

dtn� 1yðtÞ;‥:; ddtyðtÞ; yðtÞ.
As described in Chen and Yang (2009), the relation between

time and space results

θ¼ f ðtÞ ¼
Z t

0
ωðτÞ dτþθð0Þ;

with θ the angular position in revolutions and ωðtÞ the angular
speed in rev/s. The following condition must be accomplished:

ωðtÞ ¼ dθ
dt

40;

in order to assure the existence of the inverse function t ¼ f �1ðθÞ.
Thus, the variables defined in time and space domain are

related by1

xðθÞ ¼ xðf �1ðθÞÞ:
Therefore, the transformation from the system in time domain

to spatial domain is based on the definition of the derivative term:

d
dt
xðtÞ ¼ dθ

dt
dxðθÞ
dθ

¼ωðθÞdxðθÞ
dθ

; ð2Þ

thus, using yðθÞ ¼ωðθÞ and definition (2), an expression for each
derivative term in (1) can be found to be

dk

dtk
yðtÞ ¼ ykðθÞd

kyðθÞ
dθk

þςk; ð3Þ

with k¼ 1;…;n, where ςk groups nonlinear terms with lower order
derivatives, having for the first three derivatives:

ς1 ¼ 0;

ς2 ¼ yðθÞ dyðθÞ
dθ

� �2

;

ς3 ¼ 4y2ðθÞd
2yðθÞ
dθ2

dyðθÞ
dθ

þyðθÞ dyðθÞ
dθ

� �3

:

The nonlinear terms unified in Φt can be transformed into the
spatial domain as Φθ using the same derivative transformation.
Using these definitions, Eq. (1) results

ynðθÞd
nyðθÞ
dθn

þςnþan�1y
n�1ðθÞd

n�1yðθÞ
dθn�1 þςn�1

þ⋯þa1yðθÞ
dyðθÞ
dθ

þς1þa0yðθÞþΦθ ¼ b0uðθÞ; ð4Þ

which yields

dnyðθÞ
dθn

¼ b0
ynðθÞuðθÞþ

1
ynðθÞ �ςn�an�1y

n�1ðθÞd
n�1yðθÞ
dθn�1 �ςn�1

 

�⋯�a1yðθÞ
dyðθÞ
dθ

�ς1�a0yðθÞ�Φθ

�
ð5Þ

2.2. Simplified model

The variable change vðθÞ ¼ uðθÞ=ynðθÞ, which constitutes a
partial feedback linearization, allows obtaining a simplified linear
model structure:

dnyðθÞ
dθn

¼ κvðθÞþξ1ðθÞ; ð6Þ

with κ¼ b0 the system input gain and

ξ1ðθÞ ¼
1

ynðθÞ �ςn�an�1y
n�1ðθÞd

n�1yðθÞ
dθn�1 �ςn�1

 

1 For the sake of clarity, the spatial-domain notations will be denoted by an
upper bar.
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