Accepted Manuscript

Bi₂MoO₆/BiFeO₃ Heterojunction Nanofibers: Enhanced Photocatalytic Activity, Charge Separation Mechanism and Magnetic Separability

Ran Tao, Changlu shao, Xinghua Li, Xiaowei Li, Shuai Liu, Shu Yang, Chengcheng Zhao, Yichun Liu

PII:	\$0021-9797(18)30681-7
DOI:	https://doi.org/10.1016/j.jcis.2018.06.035
Reference:	YJCIS 23726
— ·	
To appear in:	Journal of Colloid and Interface Science
Received Date:	16 March 2018
Revised Date:	7 June 2018
Accepted Date:	15 June 2018

Please cite this article as: R. Tao, C. shao, X. Li, X. Li, S. Liu, S. Yang, C. Zhao, Y. Liu, Bi₂MoO₆/BiFeO₃ Heterojunction Nanofibers: Enhanced Photocatalytic Activity, Charge Separation Mechanism and Magnetic Separability, *Journal of Colloid and Interface Science* (2018), doi: https://doi.org/10.1016/j.jcis.2018.06.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Bi₂MoO₆/BiFeO₃ Heterojunction Nanofibers: Enhanced Photocatalytic Activity, Charge Separation Mechanism and Magnetic Separability

Ran Tao, Changlu shao*, Xinghua Li*, Xiaowei Li, Shuai Liu, Shu Yang, Chengcheng Zhao, Yichun Liu

Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education Changchun 130024 (P.R. China) E-mail: clshao@nenu.edu.cn (C.shao), lixh781@nenu.edu.cn (X.Li)

ABSTRACT

Uniform Bi₂MoO₆ nanosheets were grown in a high dispersed fashion on electrospun BiFeO₃ nanofibers via a solvothermal technique. The loading amount of Bi_2MoO_6 in the $Bi_2MoO_6/BiFeO_3$ heterojunction nanofibers could be controlled by adjusting the precursor concentrations in the solvothermal process. The XPS analysis, energy band position calculation and trapping experiments all proved that the Bi₂MoO₆/BiFeO₃ heterojunction is a Z-scheme heterojunction. The Z-scheme Bi₂MoO₆/BiFeO₃ heterojunction had a much higher photocatalytic activity in the visible-light photodegradation of Rhodamine B (RhB) and tetracycline hydrochloride (TC) than pure BiFeO₃ nanofibers or pure Bi₂MoO₆ nanosheets. The enhanced photocatalytic activity was attributed to the formation of Z-scheme Bi₂MoO₆/BiFeO₃ heterojunctions, which could be beneficial to the separation of photogenerated electron-hole pairs. Moreover, the Bi₂MoO₆/BiFeO₃ heterojunction nanofibers could be easily separated under an external magnetic field via the ferromagnetic BiFeO₃. After several cycles, the photocatalytic activity of the Bi₂MoO₆/BiFeO₃ heterojunction no longer significantly decreased suggesting that the Bi₂MoO₆/BiFeO₃ heterojunction is stable.

Download English Version:

https://daneshyari.com/en/article/6989982

Download Persian Version:

https://daneshyari.com/article/6989982

Daneshyari.com