Accepted Manuscript

Impact of Collected Sunlight on ZnFe₂O₄ Nanoparticles for Photocatalytic Application

N.G. Yadav, L.S. Chaudhary, P.A. Sakhare, T.D. Dongale, P.S. Patil, A.D. Sheikh

PII: S0021-9797(18)30573-3

DOI: https://doi.org/10.1016/j.jcis.2018.05.051

Reference: YJCIS 23629

To appear in: Journal of Colloid and Interface Science

Received Date: 5 March 2018 Revised Date: 9 May 2018 Accepted Date: 18 May 2018

Please cite this article as: N.G. Yadav, L.S. Chaudhary, P.A. Sakhare, T.D. Dongale, P.S. Patil, A.D. Sheikh, Impact of Collected Sunlight on ZnFe₂O₄ Nanoparticles for Photocatalytic Application, *Journal of Colloid and Interface Science* (2018), doi: https://doi.org/10.1016/j.jcis.2018.05.051

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Impact of Collected Sunlight on ZnFe₂O₄ Nanoparticles for Photocatalytic Application

N.G. Yaday, 1t L. S. Chaudhary, 1t P. A. Sakhare T. D. Dongale, P. S. Patil, 1,2 A. D. Sheikh *

¹School of Nanoscience and Technology, Shivaji University, Kolhapur 416004, M.S., India.

²Thin film Materials Lab, Department of Physics, Shivaji University, Kolhapur 416004, M.S.,

India.

*Corresponding author: arifdsheikh@gmail.com

[†] These authors contributed equally to this work.

Abstract:

In the present investigation, a series of zinc ferrite (ZnFe₂O₄) nanoparticles were synthesized

using a facile, reproducible and scalable chemical co-precipitation route for sunlight assisted

photocatalytic degradation application. In the present work, we have prepared ZnFe₂O₄ with

1:1, 1:2 and 1:3 molar ratio of zinc chloride and ferric chloride respectively. This work

reports the photodegradation of organic methylene blue dye molecules using ZnFe₂O₄ under

both normal sunlight, and collected sunlight. Among other annealing temperatures,

particularly the ZnFe₂O₄ annealed at 600 °C with a molar ratio of 1:3 showed the highest

photocatalytic degradation of methylene blue. Interestingly close to 99 % degradation in less

than 60 min of collected sunlight illumination has been achieved indicating maximum

photocatalytic activity under investigation. This expounding study will open new way of light

harvesting in the field of photocatalysis which is different from common praxis.

Keywords: ZnFe₂O₄, Photocatalysis, Natural Sunlight, Methylene blue, Photo-degradation,

Co-precipitation, kinetics rate constant

Download English Version:

https://daneshyari.com/en/article/6990159

Download Persian Version:

https://daneshyari.com/article/6990159

<u>Daneshyari.com</u>