Accepted Manuscript

Carbon Dioxide-in-Oil Emulsions Stabilized with Silicone-Alkyl Surfactants for Waterless Hydraulic Fracturing

Shehab Alzobaidi, Jason Lee, Summer Jiries, Chang Da, Justin Harris, Kaitlin Keene, Gianfranco Rodriguez, Eric Beckman, Robert Perry, Keith P. Johnston, Robert Enick

PII: DOI: Reference:	S0021-9797(18)30442-9 https://doi.org/10.1016/j.jcis.2018.04.056 YJCIS 23521
To appear in:	Journal of Colloid and Interface Science
Received Date:	6 January 2018
Revised Date:	13 April 2018
Accepted Date:	13 April 2018

Please cite this article as: S. Alzobaidi, J. Lee, S. Jiries, C. Da, J. Harris, K. Keene, G. Rodriguez, E. Beckman, R. Perry, K.P. Johnston, R. Enick, Carbon Dioxide-in-Oil Emulsions Stabilized with Silicone-Alkyl Surfactants for Waterless Hydraulic Fracturing, *Journal of Colloid and Interface Science* (2018), doi: https://doi.org/10.1016/j.jcis. 2018.04.056

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Carbon Dioxide-in-Oil Emulsions Stabilized with Silicone-Alkyl Surfactants for Waterless Hydraulic Fracturing

Shehab Alzobaidi¹; Jason Lee²; Summer Jiries²; Chang Da¹; Justin Harris¹; Kaitlin Keene²; Gianfranco Rodriguez²; Eric Beckman²; Robert Perry³; Keith P. Johnston^{1,*}; Robert Enick^{2,*}

¹Chemical Engineering, University of Texas at Austin, United States
²Chemical and Petroleum Engineering, University of Pittsburgh, United States
³GE Global Research, United States
*Corresponding Authors.

E-mail address: kpj@che.utexas.edu (Keith P. Johnston).

E-mail address: rme@pitt.edu (Robert Enick).

Keywords

Waterless emulsions, carbon dioxide in oil emulsions, carbon dioxide – oil interface, emulsion stability, silicone, PDMS, non-fluorous, comb polymers.

Abstract

The design of surfactants for CO₂/oil emulsions has been elusive given the low CO₂-oil interfacial tension, and consequently, low driving force for surfactant adsorption. Our hypothesis is that waterless, high pressure CO₂/oil emulsions can be stabilized by hydrophobic comb polymer surfactants that adsorb at the interface and sterically stabilize the CO₂ droplets. The emulsions were formed by mixing with an impeller or by co-injecting CO₂ and oil through a beadpack (CO₂ volume fractions (ϕ) of 0.50 to 0.90). Emulsions were generated with comb polymer surfactants with a polydimethylsiloxane (PDMS) backbone and pendant linear alkyl chains. The C₃₀ alkyl chains are CO₂-philic but only partially oleophilic. The adsorbed surfactants sterically stabilized CO₂ droplets against Ostwald ripening and coalescence. The optimum surfactant adsorption was obtained with a PDMS degree of polymerization of ~88 and seven C₃₀ side chains. The emulsion apparent viscosity reached 18 cP at a ϕ of 0.70, several orders of magnitude higher than the viscosity of pure CO₂, with CO₂ droplets in the 10 – 150 µm range. These

Download English Version:

https://daneshyari.com/en/article/6990377

Download Persian Version:

https://daneshyari.com/article/6990377

Daneshyari.com