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ABSTRACT

Control engineering problems are generally multi-objective problems; meaning that there are several
specifications and requirements that must be fulfilled. A traditional approach for calculating a solution
with the desired trade-off is to define an optimisation statement. Multi-objective optimisation
techniques deal with this problem from a particular perspective and search for a set of potentially
preferable solutions; the designer may then analyse the trade-offs among them, and select the best
solution according to his/her preferences. In this paper, this design procedure based on evolutionary
multiobjective optimisation (EMO) is presented and significant applications on controller tuning are
discussed. Throughout this paper it is noticeable that EMO research has been developing towards
different optimisation statements, but these statements are not commonly used in controller tuning.
Gaps between EMO research and EMO applications on controller tuning are therefore detected and

suggested as potential trends for research.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Satisfying a set of specifications and constraints required by real-
control engineering problems is often a challenge. For parametric
controller tuning, for example, these range from time-domain
specifications to frequency-domain requirements. Problems in which
the designer must deal with the fulfillment of multiple objectives are
known as multi-objective problems (MOPs).

It is common to define an optimisation statement to deal with
MOPs and calculate a solution with the desired balance among
(usually conflictive) objectives. When dealing with an MOP, we
usually seek a Pareto optimal solution (Miettinen, 1998) in which
the objectives have been improved as much as possible without
giving anything in exchange. According to Mattson and Messac
(2005), there are two main approaches to solving an optimisation
statement for an MOP: the aggregate objective function (AOF) and
the generate-first choose-later (GFCL) approach.

In the AOF context a single-index optimisation statement that
merges the design objectives is defined. In such cases, the decision
maker (DM or simply the designer) needs to describe all the trade-
offs at once and at the beginning of the optimisation process.
In the GFCL approach, the main goal is to generate many potentially
desirable Pareto optimal solutions, and then select the most
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preferable alternative. This is due to the impossibility of obtaining
a solution that is good for all objectives, and therefore several
solutions with different trade-off levels may appear. The selection
takes place in a multi-criteria decision-making (MCDM) step,
where the task of the DM is to analyse the trade-offs among the
objectives, and select the best solution according to his/her
preferences.

One way to generate such sets of potential solutions in the
GFCL approach is by means of multi-objective optimisation. This
optimisation approach seeks for a set of Pareto optimal solutions
to approximate what is known as the Pareto set (Marler & Arora,
2004; Miettinen, 1998). A Pareto set approximation may provide
a preliminary idea of the objective space, and according to
Bonissone, Subbu, and Lizzi (2009) it could be helpful when it is
necessary to explain and justify the MCDM procedure. As draw-
backs, more time and embedment of the DM in the overall process
are necessary.

In order to approximate this Pareto set, classic optimisation
techniques (Miettinen, 1998) and evolutionary multi-objective opti-
misation (EMO) approaches have been used. In the latter case,
multi-objective evolutionary algorithms (MOEAs) have become a
valuable tool to approximate the Pareto front for non-convex, non-
linear and constrained optimisation instances (Coello & Lamont,
2004; Coello, Veldhuizen, & Lamont, 2002). They have been used
with success in several control systems (Fleming & Purshouse,
2002) and engineering design (Saridakis & Dentsoras, 2008) areas.

Regarding the GFCL framework, when the multi-objective
optimisation process is merged with the MCDM step for a given
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MOP statement, it is possible to define a multi-objective optimisa-
tion design (MOOD) procedure (Reynoso-Meza, Blasco, & Sanchis,
2012). This MOOD procedure cannot substitute, in all instances, an
AOF approach; nevertheless, it could be helpful in complex design
problems, where a close embedment of the designer is necessary.
For example, when an analysis of trade-offs would be valuable for
the DM before implementing a desired solution.

In this paper, an overview of different applications and examples
of MOOD procedures in control system engineering is provided. The
paper is focused on this MOOD procedure since from a practical point
of view, it is necessary to perform the optimisation as well as the
MCDM stage. Likewise, only instances where the EMO is used in the
optimisation process are discussed. Therefore this means that opti-
misation statements using AOF approaches for MOPs are outside the
scope of this paper. This work is not intended to present an
exhaustive review of the literature, but to identify promising and
potential areas of EMO in control systems. The rest of this paper is
organised as follows: in Section 2 some definitions regarding MOP
are given together with the MOOD procedure. In Section 3, several
applications of MOOD for PID, fuzzy, predictive and state space
feedback controllers are discussed. Finally, some concluding remarks
and possible trends for research are indicated.

2. Multi-objective optimisation design procedure

An MOP, without loss of generality,! can be stated as follows:

rr}gin](O) =010 ....Jn@)] M
subject to

g0)<0 )
h@ =0 3)
0i<0;<6;, i=[1,...n] (4)

where @ e R" is defined as the decision vector, J(@) e R™ as the
objective vector, g(@), h() as the inequality and equality constraint
vectors respectively; 6;,0; are the lower and upper bounds in the
decision space for 8; variable.

As remarked previously, there is no single solution because in
general there is no solution that is best for all objectives. There-
fore, a set of solutions, the Pareto set, is defined. Each solution in
the Pareto set defines an objective vector in the Pareto front. All
solutions in the Pareto front are said to be a set of Pareto-optimal
and non-dominated solutions.

Definition (Pareto optimality, Miettinen, 1998). An objective vector
](01) is Pareto optimal if there is no other objective vector ](02)
such that],»(ﬂz) g],»(al) forallie[1,2,...,m] and]j(Bz) <]j-(01) for at
least one j,je[1,2,...,m].

Definition (Dominance (Miettinen, 1998)). An objective vector
J@") is dominated by another objective vector J(@°) if ji(02)<
]1(91) forallie[l,2,...,m].

For example, in Fig. 1, five different solutions (¢) are calculated
to approximate a Pareto front (bold line). Solutions A, B, and C are
non-dominated solutions, since there are no better solution
vectors (in the calculated set) for all the objectives. Solutions B
and C are not Pareto optimal, since some solutions (not found in
this case) dominate them. Furthermore, solution A is also Pareto
optimal, since it lies on the feasible Pareto front. The set of non-

! A maximisation problem can be converted to a minimisation problem. For
each of the objectives that have to be maximised, the transformation:
max J;(@) = —min(—J;(@)) could be applied.
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Fig. 1. Pareto optimality and dominance concepts.
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Fig. 2. Design concept and design alternative.

dominated solutions (A, B, and C) build the Pareto front approx-
imation. It is important to notice that most of the times the Pareto
front is unknown and we shall only rely on approximations.

In Mattson and Messac (2005), an addendum is incorporated
into the Pareto front notion to differentiate design concepts.
A Pareto front is defined given a design concept (or simply, a
concept) which is an idea about how to solve a given MOP. This
design concept is built with a family of design alternatives (Pareto-
optimal solutions) that are specific solutions in the design concept.
For example, in Fig. 2, a Pareto front approximation (bold line) for
a particular design concept is calculated with a set of Pareto-
optimal design alternatives (¢); we can state, for example, a PID
controller for a given MOP as a design concept, where a design
alternative is a specific set of values for its parameters.

As remarked in Mattson and Messac (2005), a comparison between
design concepts could be useful for the designer, because he will be
able to identify the concept strengths, weaknesses, limitations and
drawbacks. It is also important to visualise such comparisons, and to
have a quantitative measure to evaluate strengths and weaknesses.

A general framework is required to successfully incorporate
this approach into any engineering design process. A multi-
objective optimisation design (MOOD) procedure is shown in
Fig. 3. It consists of (at least) three main steps (Coello, Lamont, &
Veldhuizen, 2007, 2002): the MOP definition (measurement); the
multi-objective optimisation process (search); and the MCDM
stage (decision making).
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