Accepted Manuscript

Hollow urchin-like NiO/NiCo $_2O_4$ heterostructures as highly efficient catalysts for selective oxidation of styrene

Jiangyong Liu, Tingting Chen, Panming Jian, Lixia Wang, Xiaodong Yan

PII:	S0021-9797(18)30507-1
DOI:	https://doi.org/10.1016/j.jcis.2018.05.001
Reference:	YJCIS 23578
To appear in:	Journal of Colloid and Interface Science
Received Date:	24 February 2018
Revised Date:	27 April 2018
Accepted Date:	1 May 2018

Please cite this article as: J. Liu, T. Chen, P. Jian, L. Wang, X. Yan, Hollow urchin-like NiO/NiCo₂O₄ heterostructures as highly efficient catalysts for selective oxidation of styrene, *Journal of Colloid and Interface Science* (2018), doi: https://doi.org/10.1016/j.jcis.2018.05.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Hollow urchin-like NiO/NiCo₂O₄ heterostructures as highly efficient catalysts for selective oxidation of styrene

Jiangyong Liu^{a,*}, Tingting Chen^a, Panming Jian^a, Lixia Wang^a, Xiaodong Yan^b

^aSchool of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou,

Jiangsu 225002, China

^bDepartment of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA

* Corresponding author: liujy@yzu.edu.cn (J. Liu)

Abstract: Three-dimensional (3D) hierarchical hollow urchin-like NiO/NiCo₂O₄ heterostructures have been prepared via a facile one-pot hydrothermal method. The 3D urchin-like structure brings about high specific surface area of 40.2 m²g⁻¹. The NiO/NiCo₂O₄ heterostructures are composed of 59 wt% of NiO and 41 wt% of NiCo₂O₄ and enriched with NiO-NiCo₂O₄ phase boundaries. When used as catalysts for styrene oxidation reaction (SOR), the NiO/NiCo₂O₄ heterostructures present a markedly high selectivity of 90.8% to styrene oxide (SO) and a high SO yield of 81.4%. The high catalytic performance of the NiO/NiCo₂O₄ heterostructures can be attributed to the high specific surface area and the abundant NiO-NiCo₂O₄ phase boundaries, both of which contribute to the numerous active sites.

Key words: hierarchical; hollow; NiO; NiCo₂O₄; styrene oxidation

Download English Version:

https://daneshyari.com/en/article/6990445

Download Persian Version:

https://daneshyari.com/article/6990445

Daneshyari.com