Accepted Manuscript

A Novel Hollow-Hierarchical Structured Bi_2WO_6 with Enhanced Photocatalytic Activity for CO_2 Photoreduction

Lingbo Xiao, Rongbin Lin, Jin Wang, Cao Cui, Jingyun Wang, Zhengquan Li

PII:	S0021-9797(18)30314-X
DOI:	https://doi.org/10.1016/j.jcis.2018.03.064
Reference:	YJCIS 23414
To appear in:	Journal of Colloid and Interface Science
Received Date:	11 January 2018
Revised Date:	5 March 2018
Accepted Date:	19 March 2018

Please cite this article as: L. Xiao, R. Lin, J. Wang, C. Cui, J. Wang, Z. Li, A Novel Hollow-Hierarchical Structured Bi₂WO₆ with Enhanced Photocatalytic Activity for CO₂ Photoreduction, *Journal of Colloid and Interface Science* (2018), doi: https://doi.org/10.1016/j.jcis.2018.03.064

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A Novel Hollow-Hierarchical Structured Bi₂WO₆ with Enhanced Photocatalytic Activity for CO₂ Photoreduction

Lingbo Xiao, Rongbin Lin, Jin Wang*, Cao Cui, Jingyun Wang, and Zhengquan Li*

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal

University, Jinhua, Zhejiang 321004, P. R. China

E-mail: zqli@zjnu.edu.cn; wangjin@zjnu.edu.cn. Tel & Fax: +86 579 82281128

Abstract: Converting CO₂ into high-valued chemicals with sunlight is regarded as a promising way to solve the impending energy and environmental crisis. Development of efficient photocatalysts with suitable energy band gap, high stability and favorable structure is thus of very importance. Herein, a novel hierarchical Bi₂WO₆ photocatalyst assembled by Bi₂WO₆ nanosheets with a hollow and rod-shaped appearance has been developed *via* a facile hydrothermal process. Interestingly, we found that the hydrolysis of Bi(NO₃)₃ in water can produce solid Bi₆O₅(OH)₃(NO₃)₅·3H₂O microrods which can be transformed to hollow-hierarchical Bi₂WO₆ nanosheets by virtue of the Kirkendall effect. The developed Bi₂WO₆ nanosheets exhibit a 58 times higher specific surface area than that of bulk Bi₂WO₆ and a remarkable enhancement in electrochemical performance such as photocurrent and charge transfer. As a result, the hollow-hierarchical structured Bi₂WO₆. Moreover, the developed photocatalysts exhibit a high stability during the recycling experiments. This work may present a new strategy to attain hierarchical structured photocatalysts with high activity and stability toward CO₂ reduction.

Keywords: photocatalysts; Bi₂WO₆; CO₂ photoreduction; hierarchical structure.

Download English Version:

https://daneshyari.com/en/article/6990753

Download Persian Version:

https://daneshyari.com/article/6990753

Daneshyari.com