Contents lists available at ScienceDirect

Journal of Colloid and Interface Science

journal homepage: www.elsevier.com/locate/jcis

Regular Article

SEVIE

Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing

Dongzhi Zhang^{a,*}, Xin Fan^a, Aijun Yang^{b,*}, Xiaoqi Zong^a

^a College of Information and Control Engineering, China University of Petroleum (East China), Qingdao 266580, China ^b State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China

GRAPHICAL ABSTRACT

ARTICLE INFO

Article history: Received 21 February 2018 Revised 28 March 2018 Accepted 30 March 2018 Available online 30 March 2018

Keywords: α-Fe2O3 hollow microspheres MoS₂ nanosheets Ethanol gas Layer-by-layer self-assembly Hierarchical heterostructure

ABSTRACT

In this paper, we fabricated a high-performance ethanol sensor using layer-by-layer self-assembled urchin-like alpha-iron oxide (α -Fe₂O₃) hollow microspheres/molybdenum disulphide (MoS₂) nanosheets heterostructure as sensitive materials. The nanostructural, morphological, and compositional properties of the as-prepared α -Fe₂O₃/MoS₂ heterostructure were characterized by X-ray diffraction (XRD), energy dispersive spectrometer (EDS), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS), which confirmed its successful preparation and rationality. The α -Fe₂O₃/MoS₂ nanocomposite sensor shows good selectivity, excellent reproducibility, fast response/recovery time and low detection limit towards ethanol gas at room temperature, which is superior to the single component of α -Fe₂O₃ hollow microspheres and MoS₂ nanosheets. Furthermore, the response of the α -Fe₂O₃/MoS₂ nanocomposite sensor as a function of ethanol gas concentration was also demonstrated. The enhanced ethanol sensing properties of the α -Fe₂O₃/MoS₂ nanocomposite sensor were ascribed to the synergistic effect and heterojunction between the urchin-Like α -Fe₂O₃ hollow microspheres and MoS₂ nanosheets. This work verifies that the hierarchical α -Fe₂O₃/MoS₂ nanoheterostructure is a potential candidate for fabricating room-temperature ethanol gas sensor.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Corresponding authors.

https://doi.org/10.1016/j.jcis.2018.03.109 0021-9797/© 2018 Elsevier Inc. All rights reserved.

Ethanol is one of the most commonly and widely encountered alcohols. Besides, ethanol has many applications in many fields

E-mail addresses: dzzhang@upc.edu.cn (D. Zhang), yangaijun@mail.xjtu.edu.cn (A. Yang).

in the world, such as food, biomedical, chemical industries and transport driving [1,2]. Exposure to ethanol vapor for a long time results in health problems such as drowsiness, headache, liver damage and difficulty in breathing. In addition, due to the extensive use of ethanol as a beverage, ethanol drinking is one of the main causes of car accidents in the world [3]. For example, alcohol-impaired driving fatalities accounted for 31% of the total motor vehicle traffic fatalities in the United States. And for drivers, the maximum allowable limit in Italy is 130 ppm in breath (0.05% in blood) and it is 208 ppm in breath (0.08% in blood) in USA [4]. Therefore, it is important to detect ethanol vapor at ppm level.

In recent years, metal oxide semiconductors such as SnO₂, TiO₂, Co_3O_4 and Fe_2O_3 , have attracted considerable attention due to their potential application in various fields [5–9]. As an n-type semiconductor, α -Fe₂O₃ is a good candidate for constructing gas sensors due to its unique advantages, such as nano-size, good electrochemical properties, and simplicity of integration [10]. Chu et al. reported the synthesis of α -Fe₂O₃ hollow balls by a facile hydrothermal method for gas-sensing application, and found that the α -Fe₂O₃ hollow balls were sufficient towards ethanol sensing [11,12]. Wang et al. prepared porous α -Fe₂O₃ hollow microspheres with much higher response than that of α -Fe₂O₃ nanoparticles to ethanol vapor [13]. Tan et al. reported the synthesis of hollowedout hierarchical α -Fe₂O₃ nanorods via the interfacial-reaction of FeC₂O₄·2H₂O with NaOH, and the gas sensing measurement revealed that the hollowed-out hierarchical α -Fe₂O₃ nanorods exhibit high response and ultra-fast response/recovery characteristics to acetone and ethanol [14]. The above investigation indicated that the α -Fe₂O₃ with hollowed-out nanostructure exhibits excellent gas sensing performance due to its large surface area to volume ratio to facilitate the diffusion of gases.

Novel properties of graphene have been well documented, whereas the importance of graphene-like two-dimensional (2D) molybdenum disulphide (MoS₂) nanosheets is attracted considerable interest over recent years [15]. MoS₂ has strong potential as a building block for constructing gas sensors due to its tunable bandgap and unique electrical properties [16]. Nagaraian et al. investigated the electronic and adsorption behavior of alcohol vapor molecules on MoS₂ nanosheets by density functional theory (DFT) method, and the adsorption of alcohol molecules on MoS₂ nanosheets are verified with the variation on energy band gap, adsorption energy and Mulliken charge transfer [17]. Although the exact sensing mechanism of MoS₂ is still unclear, the excellent gas sensing properties of MoS₂ are worthy of further investigation. The first-principles calculation shows that the charge transfer between the gas molecules and MoS₂ nanosheets is responsible for the observed changes in its resistance [18]. As a kind of ntype semiconductor, intrinsic MoS₂ has a natural direct band gap (1.2-1.9 eV), and large surface-to-volume ratio, outstanding fieldeffect transistor (FET) behavior. Layered MoS₂ is one of the typical graphene analogues. Compared to graphene which is a semimetal with a zero band gap, the tunable bandgap of MoS₂ endows it a better candidate nanomaterial for highly sensitive gas sensors [19].

As an alternative cost-effective approach, layer-by-layer (LbL) self-assembly technique is based on sequential electrostatically adsorptions of ionized polyelectrolytes and oppositely charged materials in aqueous solutions. It is a solution-based bottom-up approach to fabricate hierarchical nanocomposite thin film as promising sensitive materials [20–22]. The LbL self-assembly approach has many advantages over other alternative methods, such as simplicity, substrate-independence, low-cost, low temperature deposition, controllable thickness from nanometers to micrometers, and no complex or costly equipment required [23]. Zhang et al. presented a high-performance ammonia sensor based on layer-by-layer self-assembled Co₃O₄/MoS₂ film, which high sensitivity, good repeatability, stability, and selectivity and fast

response/recovery properties toward ammonia sensing [19]. Su et al. fabricated a novel flexible NO₂ gas sensor by the layer-bylayer covalent anchoring of graphene oxide film, which exhibited a strong sensitivity and acceptable linearity between 1 and 20 ppm, high reproducibility and long term stability [24].

In this work, we demonstrated a high-performance ethanol sensor based on urchin-Like α -Fe₂O₃ hollow microspheres/MoS₂ nanosheets nanocomposite prepared by LbL self-assembly method. The sensor was fabricated on the substrate of printed circuit board (PCB) with interdigital electrodes (IDE). The self-assembled hierarchical α -Fe₂O₃/MoS₂ heterostructure was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectrometry (EDS). The α -Fe₂O₃/MoS₂ nanocomposite sensor shows good selectivity, excellent repeatability, fast response/ recovery time and low detection limit towards ethanol gas at room temperature, which is superior to the single component of α -Fe₂O₂ hollow microspheres and MoS₂ nanosheets. The enhanced ethanol sensing properties of the α -Fe₂O₃/MoS₂ nanocomposite sensor were ascribed to the unique nanostructure, synergistic effect and heterojunction.

2. Experiment

2.1. Sensor fabrication

 Na_2MoO_4 ·2H₂O, thioacetamide, oxalic acid, and Fe(NO₃)₃·9H₂O used in this work were obtained from Sinopharm Chemical Reagent Co. Ltd (Shanghai, China). Polyelectrolytes including 1.5 wt% poly(diallyldimethylammonium chloride) (PDDA) and 0.3 wt % poly(sodium 4-styrenesulfonate) (PSS) were obtained from Sigma-Aldrich Inc. 0.5 M NaCl was added in both PDDA and PSS solutions for ionic strength All the reagents were used without any further purification.

The urchin-like α -Fe₂O₃ hollow microspheres and MoS₂ nanosheets were prepared by a facile hydrothermal route. In the synthesis process of α -Fe₂O₃, 2 mmol Fe(NO₃)₃·9H₂O, 2 mmol thioacetamide and 4 mmol oxalic acid were dissolved into 40 mL deionized (DI) water with stirring for 30 min. And then, the asprepared solution was transferred into a 50 mL stainless-steel autoclave and heated at 140 °C for 12 h. Afterward, when the autoclave cooled down to room temperature, the final product of FeOOH suspension was washed with DI water and anhydrous ethanol for several times to remove excess ions. At last, the α -Fe₂O₃ sample was further anneal-treated at 300 °C in air [13,25]. In the synthesis process of MoS₂, Na₂MoO₄·2H₂O (1.0 g) and thioacetamide (1.2 g) were dissolved into 80 mL of DI water and subsequently stirred for 0.5 h. Then, 0.6 g of oxalic acid was added with stirring for another 0.5 h. The resulting suspension was hydrothermally treated at 200 °C for 24 h. At last, the MoS₂ sample was further anneal-treated at 700 °C in argon for 2 h [26].

The α -Fe₂O₃/MoS₂ nanocomposite was deposited as sensing material on the substrate of printed circuit board (PCB) with interdigital electrodes (IDE) via LbL self-assembly technique. The IDEs pattern has a profile size of 1×1 cm, the electrode thickness is 50 µm, the electrode width and gap both is 200 µm. The LbL fabrication process of α -Fe₂O₃/MoS₂ nanocomposite sensor was shown in Fig. 1. Two layers of PDDA/PSS were self-assembled as precursor layers for substrate charge enhancement, and then five layers of α -Fe₂O₃/MoS₂ were deposited via sequential immersion of α -Fe₂O₃ and MoS₂ solutions. The immersing time was 10 min for PDDA and PSS, and 15 min for α -Fe₂O₃ and MoS₂. Intermediate rinsing with DI water and drying with nitrogen stream were required after each monolayer assembly to reinforce the interconnection between layers. Afterward, the α -Fe₂O₃/MoS₂ nanocomposite senDownload English Version:

https://daneshyari.com/en/article/6990788

Download Persian Version:

https://daneshyari.com/article/6990788

Daneshyari.com