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The N-stages control problem for isolated signalized intersections is defined as the control problem to
disperse initial queue lengths to their optimal steady-state values in N cycles. Based on a discrete-event
model of a simplified isolated signalized intersection, the N-stages control problem is formulated as a
linear programming problem as well as a quadratic programming problem. A new algorithm is proposed
for solving the discrete optimization problem by simple calculations, based on the optimal solution of the
corresponding continuous-time problem. Numerical comparisons between the continuous-time optimal
solution and the discrete-event optimal solutions, obtained from linear programming and sequential
quadratic programming, are given for a few examples.
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1. Introduction

Traffic congestion is a common problem in most urban cities all
over the world. Congestion has several effects on travelers, busi-
nesses, agencies, and cities. One significant element is the value of
the additional time and wasted energy. The congestion in USA's
cities areas is increasing continuously, e.g. in 2011 congestion cost
(based on wasted time and fuel) was about $121 billion (Schrank,
Eisele, & Lomax, 2012), up by one billion dollars from the year
before. Of that total, about 27 billion worth was wasted time and
diesel fuel from trucks moving goods on the network.

Efficient traffic signal control at signalized intersections can
improve mobility, prevent queue spillbacks, and relieve congestion
in cities. While this paper deals with a control level of isolated
intersections, other traffic control strategies for a higher or net-
work level of urban regions, i.e. considering urban area with
several intersections, can be found in Geroliminis, Haddad, and
Ramezani (2013) and Haddad, Ramezani, and Geroliminis (2013).
The control of signalized intersections in urban transportation
systems is a problem of great importance that has attracted a lot of
attention and has been investigated by many researchers during
the last few decades. Recently, with the introduced concept of
perimeter control for urban regions in e.g. Geroliminis et al.
(2013), i.e. manipulating the traffic flows that enter and exit an
urban region, the control of isolated intersections becomes chal-
lenging as they are the traffic measures that can actuate the
perimeter control decisions in hierarchical control schemes.
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The first optimal control policy for the queue dispersal of over-
saturated intersections was proposed in Gazis and Potts (1963) and
Gazis (1964), derived by the Pontryagin maximum principle. The
policy was meant to minimize the total delay under the constraint of
complete and simultaneous dispersal of the queue lengths in all
approaches (loslovich, Gutman, & Borshchevsky, 2011; loslovich,
Haddad, Gutman, & Mahalel, 2011). The proposed model was a
continuous-time model with the assumption that the cycle length is
fixed over the rush period, defined as the time period that starts
when queues would develop and be maintained and ends at the
earliest time that queues can be dissolved simultaneously. This
model was also used by other researchers (Guardabassi, Locatelli, &
Papageorgiou, 1984; Michalopoulos & Stephanopoulos, 1977a, 1977b,
1978).

The structure of the optimal steady-state traffic control is
revealed in Haddad, De Schutter, Mahalel, loslovich, and Gutman
(2010) where it is shown that the final reachable queue lengths at
the end of the rush period, i.e. at steady-state, are not equal to
zero, as assumed in Gazis and Potts (1963) and Gazis (1964). The
optimal steady-state solution for an extended model with lost
time and constraints on the green durations is given in Haddad,
Mahalel, Toslovich, and Gutman (2010). Using the Pontryagin
maximum principle, the optimal control policy is derived in
loslovich, Haddad et al. (2011) without the simultaneous queue
dissipation assumption. The optimal synthesis of green light split
in an isolated intersection for all cases of initial queues and green
split bound conditions is demonstrated.

The above mentioned models (Gazis, 1964; Gazis & Potts, 1963;
Guardabassi et al., 1984; Michalopoulos & Stephanopoulos, 1977a,
1977b, 1978) are continuous-time, while in fact, discrete-event
models, e.g. Haddad, De Schutter et al. (2010) and Chang and Lin
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(2000), are closer to reality. In the continuous-time model, the
“switch-over time”, defined in Gazis and Potts (1963) and Gazis
(1964), for an intersection with two directions as the time instant
when the service rate is switched from its maximum to its
minimum for the direction associated with the maximum satura-
tion flow, or the end of the rush period may occur not at the end of
a cycle, while these two time instants in a discrete-event model
coincide exactly with the end of a cycle.

A discrete minimal delay model to solve the oversaturated
isolated intersection problem is proposed in Chang and Lin (2000).
The queue lengths and delays during a cycle are calculated. The
discrete Hamiltonian approach is used and the solution is “bang-
bang” control consistent with the Pontryagin maximum principle
solution in Gazis (1964). It is assumed in the discrete minimal
delay model that no queue at any approach becomes negative or
zero before the end of the rush period, i.e. all the queues are
dissolved simultaneously. The model cannot describe a positive
zero-queue length period (ZQLP), defined in Haddad, De Schutter
et al. (2010) as the time period for which the queue length is equal
to zero while the signal is green. The algorithm in Chang and Lin
(2000) adjusts the adjoint variables iteratively and terminates
when the queue length of each movement is negative at the end of
its green light. No attempt is made to reach optimal steady-state
queue lengths.

The discrete-event model in the current paper is essentially the
same as in Haddad, De Schutter et al. (2010). The queue lengths are
constrained to be non-negative and non-increasing from one cycle
to the next cycle, and the final queue lengths are the optimal
steady-state queue lengths, defined in Haddad, De Schutter et al.
(2010), Haddad, Mahalel, De Schutter, loslovich, and Gutman
(2009), and Haddad, De Schutter, Mahalel, and Gutman (2009).
The optimal discrete N-stages problem is defined as the optimal
control problem to disperse initial queue lengths to their optimal
steady state values in N cycles, and is formulated both as a linear,
and as a quadratic programming problem. Moreover, an algorithm
is proposed to obtain the optimal solution for the N-stages control
without solving the problem by linear or quadratic programming,
based on the optimal policy principles obtained from the optimal
control solution for the continuous-time model in Gazis and Potts
(1963), Gazis (1964), Michalopoulos and Stephanopoulos (1977a,
1978), and loslovich, Haddad et al. (2011).

This paper is organized as follows. First, the problem of N-stages
control is defined in Section 2. The discrete-event model and the
optimization problem are introduced in Section 3, while the
continuous-time model calculations are given in Section 4. In
Section 5 the algorithm for solving the discrete optimization are
developed, and some case study examples are presented in Section 6,
which is followed by discussion and conclusions.

2. Problem definition of N-stages control

Let us consider a simplified isolated vehicular traffic intersec-
tion with two one-way movements (m; and m;), defined as the
sets of vehicles having reached but not passed the intersection.!
Each movement is governed by a traffic signal that each can be
either green or red. Since the two movements cannot occupy the
intersection area simultaneously, the traffic signals will be oppo-
site, i.e. when movement m; has green light, movement m, sees
red light, and vice versa. Each movement will encounter inter-
twined green and red periods. Without loss of generality the
amber period is not explicitly considered, and a cycle is defined as

! Note that the model can be extended for intersections with more than two
movements, which is tedious but straightforward.

a pair of one green and one red period, whose durations may be
time-varying. The queue length for a movement is defined as the
number of vehicles belonging to the movement which is behind
the stop line, i.e. the queue does not include the vehicles that are
inside the intersection or have passed it.

For the isolated signalized intersection, we intend to determine
the N-stages traffic signal control solution that brings initial
oversaturated queue lengths to their optimal steady-state values
in N cycles while minimizing a given queue length dependent
criterions, under green duration and cycle constraints. We intend
to formulate linear and quadratic programming problems to
obtain the optimal solution. Note that the continuous-time pro-
blem, which does not consider the queue evolution within the
cycle and ignores the green-red switching, was investigated in
loslovich, Haddad et al. (2011) where the optimal control solutions
were derived and numerical comparisons with other earlier
solutions in the literature were presented. We also intend to
propose an algorithm to obtain the optimal solution for the
N-stages control without solving the problem by linear or quad-
ratic programming, based on the optimal policy principles
obtained from the optimal control solution for the continuous-
time model.

3. A discrete-event model for isolated signalized intersections

In this paper, the model of the queue dynamics at a simplified
isolated signalized intersection with two movements m; and ms,
without lost time and green duration constraints, is the same as in
Haddad, De Schutter et al. (2010), Haddad, De Schutter et al.
(2009), and Haddad, Mahalel et al. (2009), see Fig. 1. The relaxed
discrete-event max-plus (R-DMP) problem defined in Haddad,
De Schutter et al. (2010)? is used to solve the discrete optimal
problem for N-stages control when the criterion J is a strictly
increasing function of the queue lengths®
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2 The R-DMP problem neglects the lost time, however an R-DMP problem with lost
time is equivalent with an DMP problem without lost time if time and arrival rates are
scaled, see loslovich, Haddad et al. (2011).

3 Let the queue length vector g be defined as [q1(t1), q1(£2), G2(t1), G2 (E2), ...,
q1(tan-1)> 41 (t2n), Go(tan-1), G2 (t2n)]". The criterion function J is said to be a strictly
increasing function of the queue lengths, if, for all queue length vectors ¢, § with
G <q (elementwise) and §; < G; for at least one index i, it holds that J(q) <J(q).
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