Accepted Manuscript

Fabrication of nano copper oxide evenly patched on cubic sodium tantalate for oriented photocatalytic reduction of carbon dioxide

Tianyu Xiang, Feng Xin, Can Zhao, Shuo Lou, Wenxiu Qu, Yong Wang, Yuexiao Song, Shuangfang Zhang, Xiaohong Yin

PII:	S0021-9797(18)30127-9
DOI:	https://doi.org/10.1016/j.jcis.2018.01.109
Reference:	YJCIS 23267
To appear in:	Journal of Colloid and Interface Science
Received Date:	20 December 2017
Revised Date:	30 January 2018
Accepted Date:	31 January 2018

Please cite this article as: T. Xiang, F. Xin, C. Zhao, S. Lou, W. Qu, Y. Wang, Y. Song, S. Zhang, X. Yin, Fabrication of nano copper oxide evenly patched on cubic sodium tantalate for oriented photocatalytic reduction of carbon dioxide, *Journal of Colloid and Interface Science* (2018), doi: https://doi.org/10.1016/j.jcis.2018.01.109

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fabrication of nano copper oxide evenly patched on cubic sodium tantalate for oriented photocatalytic reduction of carbon dioxide

Tianyu Xiang^a, Feng Xin^a*, Can Zhao^a, Shuo Lou^a, Wenxiu Qu^a, Yong Wang^a, Yuexiao Song^a,

Shuangfang Zhang^b and Xiaohong Yin^b*

^aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China

^bSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.

*Corresponding author. E-mail addresses: xinf@tju.edu.cn (F. Xin). yinxiaohong@tjut.edu.cn (X. Yin)

Abstract: A synthetic process was exploited to fabricate patchy CuO evenly planted on cubic NaTaO₃ for photocatalytically reducing CO₂ in isopropanol. The nano patches of CuO with about 15 nm in size were uniformly distributed on the surface of NaTaO₃ via a phase-transfer protocol and solvothermal synthesis. The crystal phase, morphology, composition, optical absorption and charge separation of as-prepared CuO-NaTaO₃ were characterized by XRD, SEM, TEM, EDX, XPS, UV-Vis and PL. The results of photocatalytic reduction of CO₂ confirmed that the CuO patched NaTaO₃ possessed better ability to separate charge carriers and selectively reduce CO₂ to methanol than CuO directly loaded NaTaO₃ using the traditional liquid phase reduction procedure after comparing the methanol yields. Furthermore, 5wt% CuO patched NaTaO₃ led to the highest methanol yield of 1302.22 µmol g⁻¹ h⁻¹. A redox mechanism was proposed and illustrated in a schematic diagram.

Keywords: photocatalysis, NaTaO₃ nanocube, patchy CuO, reduction of CO₂, methanol yield

Download English Version:

https://daneshyari.com/en/article/6991669

Download Persian Version:

https://daneshyari.com/article/6991669

Daneshyari.com