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a b s t r a c t

Current practice for flight control validation relies heavily on linear analyses and nonlinear, high-fidelity

simulations. This process would be enhanced by the addition of nonlinear analyses of the flight control

system. This paper demonstrates the use of region of attraction estimation for studying nonlinear effects.

A nonlinear polynomial model is constructed for the longitudinal dynamics of NASA’s Generic Transport

Model aircraft. A polynomial model for the short period dynamics is obtained by decoupling this mode

from the nonlinear longitudinal model. Polynomial optimization techniques are applied to estimate

region of attractions around trim conditions.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Safety critical flight systems require extensive validation prior
to entry into service. Validation of the flight control system is
becoming more difficult due to the increased use of advanced flight
control algorithms, e.g. adaptive flight controls. NASA’s Aviation
Safety Program (AvSP) aims to reduce the fatal (commercial)
aircraft accident rate by 90% by 2022 (Heller, Niewoehner, &
Lawson, 2003). A key challenge in achieving this goal is the need
for extensive validation and certification tools for the flight
systems. Current certification and validation procedures involve
analytical, simulation-based and experimental techniques (Heller
et al., 2003). Current practice is to assess the closed-loop stability
and performance characteristics of the aircraft flight control system
around numerous trim conditions using linear analysis tools. The
linear analysis methods include stability margins, robustness
analysis and worst-case analysis. The linear analysis results are
supplemented with Monte Carlo simulations of the full nonlinear
equations of motion to provide further confidence in the system
performance and to uncover nonlinear dynamic characteristics,
e.g. limit cycles. Hence, current practice involves extensive linear
analysis at different trim conditions and probabilistic nonlinear
simulation results. The certification process typically does not
involve analytical nonlinear methods.

The gap between linear analyses and Monte Carlo simulations
can cause significant nonlinear effects to go undetected. For
example, several F/A-18 aircraft were lost due to a nonlinear

loss-of-control phenomenon known as the falling leaf mode
(Heller, Niewoehner, & Lawson, 1999; Heller, David, & Holmberg,
2004; Jaramillo & Ralston, 1996; Lluch, 1998). Linear analysis tools
did not detect the potential of the closed-loop system to exhibit the
falling leaf mode. Thus there is a need for nonlinear analysis tools to
fill this gap (Chakraborty et al., 2010). Recently, significant research
has been performed on the development of nonlinear analysis
tools for computing regions of attraction, reachability sets, input–
output gains, and robustness with respect to uncertainty for
nonlinear polynomial systems (Chiang & Thorp, 1989; Davison &
Kurak, 1971; Genesio, Tartaglia, & Vicino, 1985; Parrilo, 2000;
Tan, 2006; Tan, Topcu, Seiler, Balas, & Packard, 2008; Tibken,
2000; Tibken & Fan, 2006; Topcu, Packard, Seiler, & Wheeler, 2007,
2008; Vannelli & Vidyasagar, 1985). These tools make use of
polynomial sum-of-squares (SOS) optimization (Parrilo, 2000).
Unfortunately, the polynomial SOS techniques can only be applied
to the dynamics described by polynomial vector field, though they
offer great potential to bridge the gap in the flight control validation
process.

The objective of this paper is to demonstrate the advantage of
including nonlinear analysis tools based on SOS techniques in the
flight control law validation process. The computational require-
ments for sum-of-squares (SOS) optimizations grow rapidly in the
number of variables and polynomial degree. This roughly limits
SOS methods to nonlinear analysis problems with at most 8–10
states and degree 3–5 polynomial models. This computational
constraint does not limit the usefulness of these techniques. The
construction of accurate, low-degree polynomial models is an
important step in the proposed analysis process.

This paper applies the nonlinear analysis tools on NASA’s
Generic Transport Model (GTM) aircraft (Cox, 2009; Murch &
Foster, 2007). The GTM is the primary test aircraft for NASA’s
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Airborne Subscale Transport Aircraft Research (AirSTAR) flight test
facility (Bailey, Hostetler, Barnes, Belcastro, & Belcastro, 2005;
Jordan & Bailey, 2008; Jordan, Foster, Bailey, & Belcastro, 2006).
The AirSTAR program addresses the challenges associated with
validating flight control law in adverse condition (Gregory, Cao,
Xargay, Hovakimyan, & Zou, 2009; Murch, 2008; Murch, Cox, &
Cunningham, 2009). The polynomial model constructed in this
paper accurately represents the longitudinal dynamics of NASA’s
Generic Transport Model (GTM) aircraft and it is suitable to address
the issues with flight control law validation and verification.

The paper has the following structure. First, a polynomial
model of the longitudinal dynamics of NASA’s GTM aircraft (Cox,
2009; Murch & Foster, 2007) is constructed in Section 2. The
longitudinal dynamics consist of a phugoid and short period mode.
In Section 2.3, a polynomial model for the short period dynamics is
obtained by decoupling this mode from the nonlinear longitudinal
model. This nonlinear short period model is of interest because the
decoupling of the longitudinal modes is typically done using
linearized models. Section 3 describes a computational procedure
to estimate regions of attraction for polynomial systems (Jarvis-
Wloszek, 2003; Jarvis-Wloszek, Feeley, Tan, Sun, & Packard, 2003,
2005; Tan, 2006; Tan & Packard, 2004; Topcu et al., 2007, Topcu,
Packard, & Seiler, 2008). This algorithm is applied in Section 4 to
estimate regions of attractions for the open-loop short period
dynamics and a closed-loop longitudinal GTM aircraft. Analysis
of the 2-state short period model is presented in Section 4 is
for illustrative purposes since the system trajectories can be
entirely visualized in a phase-plane diagram. This model is used
to demonstrate that the linearized model fails to capture significant
nonlinear effects. The analysis of the 4-state longitudinal GTM
aircraft demonstrates that the nonlinear region of attraction (ROA)
computational procedure can be applied to systems with higher
state dimensions. The paper concludes with a summary of the
contribution of the paper.

2. Polynomial aircraft models

NASA’s Generic Transport Model (GTM) describes a remote-
controlled 5.5 percent scale commercial aircraft (Cox, 2009; Murch
& Foster, 2007). The main GTM aircraft parameters are provided in
Table 1. NASA constructed a high fidelity 6 degree-of-freedom
Simulink model of the GTM with the aerodynamic coefficients
described as look-up tables. This section describes the construction
of polynomial models of the GTM longitudinal and short period
dynamics based on the look-up table data.

2.1. Longitudinal dynamics

The longitudinal dynamics of the GTM are described by a
standard 4-state longitudinal model (Stevens & Lewis, 1992):

_V ¼
1

m
ð�D�mgsinðy�aÞþTxcosaþTzsinaÞ ð1Þ

_a ¼ 1

mV
ð�Lþmgcosðy�aÞ�TxsinaþTzcosaÞþq ð2Þ

_q ¼
ðMþTmÞ

Iyy
ð3Þ

_y ¼ q ð4Þ

where V is the air speed (m/s), a is the angle of attack (rad), q is the
pitch rate (rad/s) and y is the pitch angle (rad). The control inputs
are the elevator deflection delev (rad) and engine throttle dth

(percent). For ease of interpretation, plots of a, q and delev are
shown in units of deg, deg/s, and deg, respectively.

The drag force D (N), lift force L (N), and aerodynamic pitching
moment M (N m) are given by

D¼ qSCDða,delev,q̂Þ ð5Þ

L¼ qSCLða,delev,q̂Þ ð6Þ

M¼ qScCmða,delev,q̂Þ ð7Þ

where q :¼ 1
2rV2 is the dynamic pressure (N/m2) and q̂ :¼ ðc=2VÞq

is the normalized pitch rate (unitless). CD, CL, and Cm are unitless
aerodynamic coefficients computed from look-up tables provided
by NASA.

The GTM has one engine each on the port and starboard sides
of the airframe. Equal thrust settings for both engines is assumed.
The thrust from a single engine T (N) is a function of the throttle
setting dth (percent). TðdthÞ is a given ninth-order polynomial in
NASA’s high fidelity GTM simulation model. Tx (N) and Tz (N) denote
the projection of the total engine thrust along the body x and body
z-axes, respectively. Tm (N m) denotes the pitching moment due to
both engines. Tx, Tz and Tm are given by

TxðdthÞ ¼ nENGTðdthÞcosðe2Þcosðe3Þ ð8Þ

TzðdthÞ ¼ nENGTðdthÞsinðe2Þcosðe3Þ ð9Þ

TmðdthÞ ¼ rzTxðdthÞ�rxTzðdthÞ ð10Þ

nENG¼2 is the number of engines. e2 ¼ 0:0375 rad and e3 ¼

�0:0294 rad are angles specifying the rotation from engine axes
to the airplane body axes. rx¼0.1371 m and rz¼0.0907 m specify
the thrust moment arm.

2.2. Polynomial longitudinal model

The following terms of the longitudinal model presented in
Section 2.1 are approximated by low-order polynomials:

1. Trigonometric functions: sinðaÞ, cosðaÞ, sinðy�aÞ, cosðy�aÞ.
2. Engine model: TðdthÞ.
3. Rational dependence on speed: 1=V .
4. Aerodynamic coefficients: CD, CL, Cm.

Constructing polynomial approximations of the trigonometric
functions, engine model, and rational dependence on speed is
relatively straight-forward. The trigonometric functions are
approximated by Taylor series expansions: sinz� z� 1

6 z3 and
cosz� 1� 1

2 z2 for z in units of radians. For jzjrp=4 rad the
maximum approximation error for the sine and cosine functions
is 0.35% and 2.2%, respectively. For the engine model, a least-
squares technique is used to approximate the ninth order poly-
nomial function TðdthÞ by the following third order polynomial:

TðdthÞ ��8:751� 10�6d3
thþ5:115� 10�3d2

thþ3:673

�10�1dthþ4:825 ð11Þ

The maximum approximation error is 1.3% over the full range
throttle inputs dthA ½0%,100%�. The least-squares technique is also
used to compute a linear fit to 1=V over the desired range of interest

Table 1
Aircraft and environment parameters.

Wing area, S 0.5483 m2

Mean aerodynamic chord, c 0.2790 m

Mass, m 22.50 kg

Pitch axis moment of inertia, Iyy 5.768 kg-m2

Air density, r 1.224 kg/m3

Gravity constant, g 9.810 m/s2
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