Accepted Manuscript Facile synthesis of Bi₂MoO₆/reduced graphene oxide composites as anode materials towards enhanced lithium storage performance Xiangang Zhai, Jianping Gao, Ruinan Xue, Xiaoyang Xu, Luyao Wang, Qiang Tian, Yu Liu PII: S0021-9797(18)30154-1 DOI: https://doi.org/10.1016/j.jcis.2018.02.012 Reference: YJCIS 23284 To appear in: Journal of Colloid and Interface Science Received Date: 14 December 2017 Revised Date: 27 January 2018 Accepted Date: 4 February 2018 Please cite this article as: X. Zhai, J. Gao, R. Xue, X. Xu, L. Wang, Q. Tian, Y. Liu, Facile synthesis of Bi₂MoO₆/ reduced graphene oxide composites as anode materials towards enhanced lithium storage performance, *Journal of Colloid and Interface Science* (2018), doi: https://doi.org/10.1016/j.jcis.2018.02.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ## **ACCEPTED MANUSCRIPT** Facile synthesis of Bi₂MoO₆/reduced graphene oxide composites as anode materials towards enhanced lithium storage performance Xiangang Zhai,^a Jianping Gao,*,^a Ruinan Xue,^a Xiaoyang Xu,^b Luyao Wang,^a Qiang Tian,^a Yu Liu*,^a ^aDepartment of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China ^bSchool of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology #### **Abstract** Bi₂MoO₆/reduced graphene oxide (Bi₂MoO₆/rGO) composites were fabricated by a facile one-pot hydrothermal approach, in which Bi₂MoO₆ nanosheets and rGO were simultaneously obtained. The structure and composition of the as-synthesized Bi₂MoO₆ and Bi₂MoO₆/rGO materials were characterized via FT-IR, BET, TGA, XRD, TEM, SEM and XPS analyses, and the electrochemical performance of Bi₂MoO₆/rGO as an anode in a lithium-ion battery was investigated. Compared with pristine Bi₂MoO₆, the Bi₂MoO₆/rGO composites have higher capacities, better cycle stability and higher rates. For a current density of 100 mA g⁻¹, the initial discharge capacities of the Bi₂MoO₆/rGO-20 and pristine Bi₂MoO₆ were 1049.6 mAh g⁻¹ and 528.5 mAh g⁻¹, respectively. After 100 cycles, the capacity retention for the Bi₂MoO₆/rGO-20 and pristine Bi₂MoO₆ were respectively 80.4% and 30.7% using the 2 nd cycle capacities (895.8 and 402.4 mAh g⁻¹) as references. The enhanced #### Download English Version: # https://daneshyari.com/en/article/6991951 Download Persian Version: https://daneshyari.com/article/6991951 <u>Daneshyari.com</u>