Accepted Manuscript

Polymer Nanosheets Derived Porous Carbon Nanosheets as High Efficient Electrocatalysts for Oxygen Reduction Reaction

Wenbei Zhang, Sai Sun, Lingyun Yang, Chenbao Lu, Yafei He, Chao Zhang, Ming Cai, Yefeng Yao, Fan Zhang, Xiaodong Zhuang

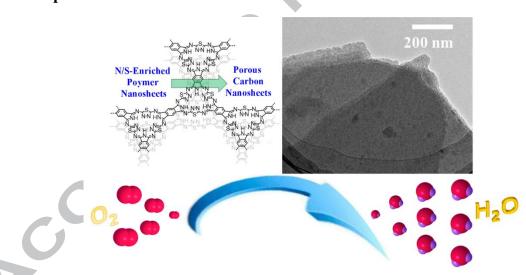
PII: DOI: Reference:	S0021-9797(18)30026-2 https://doi.org/10.1016/j.jcis.2018.01.020 YJCIS 23178
To appear in:	Journal of Colloid and Interface Science
Received Date:	30 October 2017
Revised Date:	3 January 2018
Accepted Date:	5 January 2018

Please cite this article as: W. Zhang, S. Sun, L. Yang, C. Lu, Y. He, C. Zhang, M. Cai, Y. Yao, F. Zhang, X. Zhuang, Polymer Nanosheets Derived Porous Carbon Nanosheets as High Efficient Electrocatalysts for Oxygen Reduction Reaction, *Journal of Colloid and Interface Science* (2018), doi: https://doi.org/10.1016/j.jcis.2018.01.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Polymer Nanosheets Derived Porous Carbon Nanosheets as High Efficient Electrocatalysts for Oxygen Reduction Reaction

Wenbei Zhang,^a Sai Sun,^b Lingyun Yang,^c Chenbao Lu,^a Yafei He,^a Chao Zhang,^a Ming Cai,^a Yefeng Yao,^d Fan Zhang,^{*a} Xiaodong Zhuang^{*ae}


^aState Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai, China.

^bKey Lab for Advanced Materials, Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China. ^ciHuman Institute, ShanghaiTech University, 100 Haike Road, Pudong, 201210 Shanghai, China.

^dPhysics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, North Zhongshan Road 3663, 200062 Shanghai, China.

^eCenter for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.

* E-mail: fan-zhang@sjtu.edu.cn (F.Z.); zhuang@sjtu.edu.cn (X.Z.).

Graphical abstract:

A rational design towards Fe/N/S-doped porous carbon nanosheets without using any templates was developed as electrochemical catalysts for oxygen reduction reaction.

Download English Version:

https://daneshyari.com/en/article/6992055

Download Persian Version:

https://daneshyari.com/article/6992055

Daneshyari.com