Journal of Colloid and Interface Science 515 (2018) 172-188

Contents lists available at ScienceDirect

Journal of Colloid and Interface Science

journal homepage: www.elsevier.com/locate/jcis

Regular Article

Trimellitated sugarcane bagasse: A versatile adsorbent for removal of cationic dyes from aqueous solution. Part I: Batch adsorption in a monocomponent system

Renata Aparecida Fideles^a, Gabriel Max Dias Ferreira^a, Filipe Simões Teodoro^a, Oscar Fernando Herrera Adarme^b, Luis Henrique Mendes da Silva^c, Laurent Frédéric Gil^d, Leandro Vinícius Alves Gurgel^{a,*}

^a Grupo de Físico-Química Orgânica (GFQO), Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, s/n°, Bauxita, 35400-000 Ouro Preto, Minas Gerais, Brazil

^bLaboratório de Química Tecnológica e Ambiental, Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, s/n°, Bauxita, 35450-000 Ouro Preto, Minas Gerais, Brazil

^c Grupo de Química Verde Coloidal e Macromolecular, Departamento de Química, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Avenida P.H. Rolfs, 36570-000 Viçosa, Minas Gerais, Brazil

^d Grupo de Química Orgânica Ambiental (GQOA), Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, s/n°, Bauxita, 35400-000 Ouro Preto, Minas Gerais, Brazil

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Article history: Received 19 November 2017 Revised 4 January 2018 Accepted 5 January 2018 Available online 6 January 2018

Keywords: Sugarcane bagasse Adsorption Auramine-O

ABSTRACT

Trimellitated-sugarcane bagasse (STA) was used as an environmentally friendly adsorbent for removal of the basic dyes auramine-O (AO) and safranin-T (ST) from aqueous solutions at pH 4.5 and 7.0. Dye adsorption was evaluated as a function of STA dosage, agitation speed, solution pH, contact time, and initial dye concentration. Pseudo-first- and pseudo-second-order, Elovich, intraparticle diffusion, and Boyd models were used to model adsorption kinetics. Langmuir, Dubinin-Radushkevich, Redlich-Peterson, Sips, Hill-de Boer, and Fowler-Guggenheim models were used to model adsorption isotherms, while a Scatchard plot was used to evaluate the existence of different adsorption sites. Maximum adsorption capacities for removal of AO and ST were 1.005 and 0.638 mmol g^{-1} at pH 4.5, and 1.734 and 1.230 mmol g^{-1} at pH 7.0, respectively. Adsorption enthalpy changes obtained by isothermal titration

* Corresponding author.

E-mail addresses: legurgel@iceb.ufop.br, legurgel@yahoo.com.br (L.V.A. Gurgel).

Nomenclature

AO	auramine-O	υ	number of degrees of freedom
$a_{\rm R}$	Redlich-Peterson constant (L mmol ⁻¹)	Р	number of variables of the model
α	initial adsorption rate (mmol g^{-1} min ⁻¹)	Р	equilibrium pressure
h	Langmuir hinding constant (L mmol ^{-1})	Po	saturation pressure
D	colid characteristic energy towards a reference		proudo first order
D	solid characteristic energy towards a reference	FFU	pseudo-mst-order
	adsorbate (mol ² kJ ²)	pH_{PZC}	point of zero charge
BET	Brunauer, Emmett, and Teller	PSO	pseudo-second-order
BIH	Barret, Javner, and Halenda	pwg	percent weight gain (%)
ß,	desorption constant (σ mmol ⁻¹)	Pv	pyridine
Paes	Redlich Deterson exponent (dimensionless)	r y	adcomption conscitut (mmol a^{-1})
р С	Redicti-retersoil exponent (dimensionless)	q	
C	concentration at time t or equilibrium (mmol L)	$q_{\rm s}$	maximum adsorption capacity (mmol g)
С	interaction energy among adsorbed molecules	$q_{\rm i,int}$	heats in the reaction cell at the i^{tn} injection in the
	$(k mol^{-1})$		presence of the STA adsorbent (kJ)
CN	coordination number	() :	heats in the reaction cell at the i^{th} injection in the
Л	effective diffusion coefficient $(m^2 min^{-1})$	91,011	absonce of the STA adsorbant (kl)
	NN dimethal asta wide	0	absence of the STA ausoident (K_j)
DMA	N,N-dimethylacetamide	Q _{max}	maximum adsorption capacity (mmol g ⁻¹)
DTGS	deuterated triglycine sulfate detector	Q _{max,e}	maximum adsorption capacity at equilibrium
D-R	Dubinin-Radushkevich		(mmol g^{-1})
$\Delta_{\rm ads} H$	adsorption enthalpy change $(kI mol^{-1})$	Ore-ads	maximum re-adsorption capacity (mmol g^{-1})
A Hdye-dye	enthalow changes associated with the dve-dve inter-	R	dve removal percentage (%)
∠ads ¹	actions on the adsorbant surface (kI mol ⁻¹)		Podlich Deterson
	actions on the ausorbent surface (kj mor)	N-F p ²	Reditch-reterson
$\Delta_{\rm ads} H^{\rm aye \ sm}$	enthalpy changes associated with the formation of	R ²	determination coefficient
	dye-adsorbent interactions (kJ mol ^{-1})	RSS	residual sum of squares
$\Delta_{ads}H^{desol}$	enthalpy changes associated with the desolvation of	SB	sugarcane bagasse
	adsorption sites on the STA surface and dve mole-	ST	safranin-T
	cules in the bulk solution (kI mol ^{-1})	STA	trimellitated sugarcane bagasse
Е	characteristic energy of adcorption $(kJ mol^{-1})$		STA loaded with auramine O
	characteristic energy of ausorption (Kj mor	SIA-AU	STA loaded with acfurin T
EDX	energy dispersive X-ray spectroscopy	51A-51	SIA-loaded with safranin-1
Edes	desorption efficiency (%)	STA-DAO	STA after desorption of auramine-O
$E_{\rm re-ads}$	re-adsorption efficiency (%)	STA-DST	STA after desorption of safranin-T
8	adsorption potential (kI mol $^{-1}$)	te	equilibrium time (min)
f	fractional loading	to	the time constant (min)
J F C	Fowler Cuggenheim	0	fractional coverage
	Fourier transforms informed an estimation	U	indutional coverage
FIIK	Fourier transform infrared spectroscopy	V	volume of the dye solution (L)
γe	dye activity coefficient at equilibrium	Wi	weighting coefficient
h	initial adsorption rate of the pseudo-second-order	W _{STA}	weight of STA (g)
	kinetic model (mmol g^{-1} min ⁻¹)	W _{STA dve}	weight of the STA loaded with a dye (g)
H-B	Hill-de Boer	W'STA	weight of STA in $W_{STA, dvo}(g)$
IARC	international Agency for Research on Cancer	1W/ ,	weight of dve not desorbed from the STA adsorbent
ITC	isothermal titration calorimetry	w dye	after the description (mg)
IIC ID		,,	
IR	infrared	W'dye	weight of dye adsorbed on the SIA in the re-
k_1	pseudo-first-order rate constant (min ⁻¹)		adsorption experiment (mg)
k_2	pseudo-second-order rate constant (g mmol ^{-1} min ^{-1})	χ^2	chi-square
K ₂	thermodynamic equilibrium constant (dimension-	χ^2 red	reduced chi-square
- a	less)	<i>V</i> .	experimental data point
V	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	\hat{y}_1	estimated data point calculated by the model
KHB		<i>y</i> i	estimated data point calculated by the model
<i>K</i> _i	intraparticle diffusion rate constant (mmol g	Z	charge of the adsorbate
	$\min^{-1/2}$)		
K _{FG}	Fowler-Guggenheim constant (L mmol ⁻¹)	Subscripts	
KR	Redlich-Peterson constant (L g^{-1})	ads	adsorption
<i>II</i>	ionic strength (mol I^{-1})	ro ada	re adcomption
n	number of carboxylic acid groups (mmol a^{-1})	re-aus	
"COOH	Since model parameter accepted with the hotor	e	equilibrium
п	sips model parameter associated with the netero-	exp	experimental
	geneity of the adsorption system	t	time
ni	amount of dye (in mol)	Т	theoretical value obtained from the model
Ν	number of experimental data points		
	-		

Safranin-T Desorption Isothermal titration calorimetry calorimetry (ITC) ranged from -21.07 ± 0.25 to -7.19 ± 0.05 kJ mol⁻¹, indicating that both dyes interacted with STA by physisorption. Dye desorption efficiencies ranged from 41 to 51%, and re-adsorption efficiencies ranged from 66 to 87%, showing that STA can be reused in new adsorption cycles. ITC data combined with isotherm studies allowed clarification of adsorption interactions.

© 2018 Elsevier Inc. All rights reserved.

Download English Version:

https://daneshyari.com/en/article/6992230

Download Persian Version:

https://daneshyari.com/article/6992230

Daneshyari.com