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Wetting of flat gradient surfaces
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g r a p h i c a l a b s t r a c t

A cross-section of the spherically-symmetrical droplet deposited on the gradient substrate characterized by cSL(x) and cSA(x), exposed to an external
axisymmetric field U(x,h).
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a b s t r a c t

Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent
contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gra-
dient, flat solid surfaces is treated within the variational approach, under which the contact line is free to
move along the substrate. Transversality conditions of the variational problem give rise to the generalized
Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet,
placed on a gradient surface depends on the radius of the contact line and the values of derivatives of
interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the
contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is
discussed.

� 2018 Elsevier Inc. All rights reserved.

1. Introduction

Contact angle hysteresis remains in the focus of interest of
researchers working in the interface science [1–8]. Contact angle
hysteresis (CAH) is inherent not only for solid/liquid but also for

liquid/vapor interfaces [9–10]. Understanding of the phenomenon
of contact angle hysteresis is crucial for a diversity of applications
such as painting, printing and coating. Hysteresis, which is the dif-
ference between the maximum (advancing) and minimum (reced-
ing) contact angle, is caused by the adhesion hysteresis in the
solid–liquid contact area (2D effect [11]) and by pinning of the
solid–liquid–air triple line due to the surface roughness (1D effect)
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[4–8]. The phenomenological model of the CAH implying the free
movement of the contact line along the substrate was suggested
recently [1]. Usually contact angle hysteresis retains the motion
of droplets; however, it was recently demonstrated that it may also
promote the motion of floating objects [9–10].

The famous Young equation, relating the origin of the contact
angle to the interaction between particles constituting a solid
substrate and liquid predicts zero contact angle hysteresis
(remarkably it could not be found in the famous essay by Thomas
Young [12]). It asserts that the equilibrium contact angle hY is
unambiguously defined by the triad of the surface tensions:

cos hY ¼ cSA � cSL
c

ð1Þ

where cSA; cSL; c are the surface tensions at the solid/air (vapor),
solid/liquid and liquid/air interfaces respectively [6–8]. Various
pathways of rigorous thermodynamic grounding of the Young equa-
tion were suggested, including the principle of virtual works [13],
minimization of the free energy of the drop [14] and concepts sup-
plied by non-extensive thermodynamics [15]. However, it seems
that the most accurate and general derivation of the Young equa-
tion is obtained within variational treatment of the wetting prob-
lem [8,16–19], exploiting the transversality conditions (TC) for the
appropriate variational problem with free endpoints [19–20]. TC
is a necessary condition for the vanishing of the first variation of
a functional in the variational problems [19–20]. The presented
paper demonstrates that the same variational method is applicable
for the analysis of the CAH on the gradient surfaces, studied exten-
sively in the past decade in a view of their biomedical and micro-
fluidics applications [21–26]. There exist a variety of methods
enabling manufacturing of gradient surfaces, one of which is the
varying of the topography of the surface [23,24]. Our paper is
devoted to wetting of atomically smooth gradient surfaces, such
as those reported in Refs. [22,27], where the gradient surfaces were
prepared with the diffusion controlled chemical reactions, in partic-
ular by allowing the vapor of decyltrichlorosilane to diffuse over a
silicon wafer [27]. The resulting surface displayed a gradient of
hydrophobicity (with the contact angle of water changing from
97� to 25�) over a distance of 1 cm, enabling directed transport of
water droplets [22,27].

2. Results and discussion

Consider wetting of an atomically flat, gradient substrate in the
situation of the partial wetting when the spreading parameter is
negative [6–8]. For the sake of simplicity consider the axially sym-
metrical situation depicted in Fig. 1. When a droplet is deposited
on such a gradient substrate as depicted in Fig. 1, its free energy
G could be written as:

Gðh;h0Þ ¼
Z a

o
2pcx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02

q
þ 2pxðcSLðxÞ � cSAðxÞÞ þ Uðx;hÞ þ 2pC

� �
dx

ð2Þ

where a is the contact radius, h(x) is the local height of the liquid
surface above the point x of the substrate; h0 ¼ dh

dx; c ¼ const is the
surface tension of liquid, cSLðxÞ and cSAðxÞ are the x-coordinate-
dependent solid-liquid and solid-air interfacial tensions (recall, that
the solid surface is the ‘‘gradient” one, the distribution of interfacial
tensions is axially-symmetric about the y-axis, and the roughness of
the surface is negligible), U (x,h) represents the axisymmetric exter-
nal field, into which the entire system is embedded, C is a line ten-
sion which for the sake of simplicity is assumed to be constant
across the surface [28–30], and the integral is extended over the
substrate area. The first term of the integrand presents the capillary
energy of the liquid cap and the second term describes the change
in the energy of the gradient substrate covered by liquid. We also
suppose that the droplet does not loss its mass, thus the condition
of the constant volume V should be considered as:

V ¼
Z a

o
2pxhðxÞdx ¼ const: ð3Þ

Eqs. (2) and (3) reduce the problem to minimization of the
functional:

Gðh; h0Þ ¼
Z a

0

~Gðh;h0
; xÞdx; ð4Þ

~Gðh; h0
; xÞ ¼ 2pcx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02

q
þ 2pxðcSLðxÞ � cSAðxÞÞ þ Uðx;hÞ

þ 2pCþ 2pkxh; ð5Þ
where k is the Lagrange multiplier to be calculated from Eq. (3). For
a calculation of the droplet’s shape we would have to solve the
appropriate Euler-Lagrange equations [19]. However, we will not
calculate the droplet’s shape, since our interest is the apparent
equilibrium contact angle h corresponding to the equilibrium of
the droplet. Now consider that we treat the variational problem
with free endpoints [19–20]. Thus, the TC of the variational problem
should be involved [19–20]. TC at the endpoint a supplies:

~G� h0~G0
h0

� �
x¼a

¼ 0; ð6Þ

where ~G0
h0 denotes the h0 derivative of ~G [16]. Substitution of Eq. (5)

into the TC, given by Eq. (7), taking into account hðaÞ ¼ 0,
Uðx ¼ a;h ¼ 0Þ ¼ 0, and the routine transformations akin to those
performed in Refs. [8,16–17] give rise to Eq. (7):

cos h ¼ cSAðaÞ � cSLðaÞ
c

� C
ca

; ð7Þ

which looks well-expected and trivial. Indeed, the equilibrium,
apparent contact angle h depends on the values of interfacial ten-
sions, as taken at the contact (triple) line, namely cSAðaÞ and
cSLðaÞ, as mentioned in Ref. [31]. Eq. (7) may be easily understood
within the traditional ‘‘force-based” interpretation of the Young
equation [32]. It is easily recognized that the apparent contact angle
h is independent on the external field U(h, x), under assumptions
adopted for this field. However Eq. (7) is less trivial than it seems
from the first glance, owing to the fact that the apparent contact
angle h now depends on the radius of the contact line a; thus,
Eq. (7) immediately predicts the CAH, inevitable for gradient sur-
faces even when the effects due to the line tension C are negligible.

Let us establish the CAH quantitatively. For this purpose we
expand interfacial tensions into Taylor-McLaurin series (we restrict
ourselves by the linear approximation; recall also that the surface
distribution of the interfacial tensions cSAðxÞ) and cSLðxÞ is sug-
gested to be axisymmetric). The aforementioned expanding yields:

cSAðxÞ ¼ c0SA þ a
@cSAðxÞ

@x

� �
x¼0

; c0SA ¼ cSAðx ¼ 0Þ ð8aÞ
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Fig. 1. A cross-section of the spherically-symmetrical droplet deposited on the
gradient substrate characterized by cSLðxÞ and cSAðxÞ, exposed to an external
axisymmetric field U(x,h).
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