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a b s t r a c t

In this paper, we present an implementation of the sliding mode twisting controller on an electropneu-
matic plant for a tracking control problem. To this end, implicitly and explicitly discretized twisting con-
trollers are considered. We discuss their structure, properties and implementations, as well as the ex-
perimental results. The analysis of the performance sustains the theoretical superiority of the implicitly
discretized version, as shown in previous works. The main advantages of the implicit method are better
tracking performance and drastic reduction in the input and output chattering. This is achieved without
modifying the structure of the controller compared to its continuous-time version. The tracking error
cannot be used as the sliding variable: it has a relative degree 3 w.r.t. the control input. The tuning of the
sliding surface has well as some other parameters in the control loop was instrumental in achieving good
performance. We detail the selection procedure of those parameters and their influence on the closed-loop
behavior. Finally we also present some results with an implicitly discretized EBC-SMC controller.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Implementation of control laws is almost exclusively done using
microcontrollers. This implies that the controller is in discrete-time
rather than in continuous-time. In sliding mode control, this can
induce a degradation of the performance by contributing to the
chattering phenomenon. We call this the numerical chattering. An
intense activity over the last 30 years was devoted to the reduction
of this numerical chattering, mainly for equivalent control based
sliding mode control (ECB-SMC). In the early 90s, second order
sliding mode control concept was introduced in Levant (1993) and
sparked the development of a large wealth of literature. One of the
first controllers of this kind was the twisting controller which fea-
tures a discontinuous control action w.r.t. the sliding variables.
However, to the best of our knowledge, few discrete-time versions
of the twisting controller have been proposed. The substitution of
the signum function by a saturation, common trick to reduce the
chattering for first order SMC, has no straightforward extension to
the twisting algorithm. It is then fair to assume that the explicit
discretization was used to get a discrete-time twisting controller,
like in Taleb, Levant, and Plestan (2013).

The other discretization method we consider is the implicit
method. It has been used for a long time in the nonsmooth

mechanics community, but it was not applied in control theory
until very recently (Acary & Brogliato, 2010; Acary, Brogliato, &
Orlov, 2012; Huber, Acary, & Brogliato,... 2013a, 2013b). The implicit
discretization of the twisting controller was first studied in Acary
et al. (2012). Roughly speaking, the difference between the explicit
and implicit methods in our context is the following: given a par-
tition { }tk of a time interval, with the explicit discretization, at the
time instant tk, the argument of the signum function is the value of
the sliding variable at tk, whereas with the implicit discretization it
is the value at +tk 1. Despite its name and formulation, the implicitly
discretized twisting controller is non-anticipative and induces a
well-defined behavior, as we shall see in Section 2. Its main features
are the drastic reduction of the output chattering and the reduction
of the control input chattering, that is the control input is no more
of the high frequency “bang-bang” type. In the discrete-time sliding
regime, the control input is also insensitive to an increase of the
gain. To simplify the nomenclature, we refer to the discrete-time
twisting controller with an implicit (resp. explicit) discretization as
the implicit (resp. explicit) twisting controller.

In the following, we present results from an implementation of
both explicit and implicit twisting controllers on an electropneu-
matic plant. The control problem at hand is the tracking of a si-
nusoidal trajectory for the position of the end of the piston. The
analysis of the gathered data supports the theoretically predicted
reduction of the chattering claimed in Acary et al. (2012) and also
the claim that the numerical chattering can be the main source of
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chattering, see Huber et al. (2013a). This highlights the importance
of the discretization process which is unfortunately often over-
looked both in the analysis and in the implementation.

The second part of the paper is dedicated to the choice of three
parameters: the first one defines the sliding variable and the two
others are constants for two filtered differentiators.

The influence of those parameters is only visible with the im-
plicit controller. With an explicit one, the performance is not good
enough to always see a change when their values change. It ap-
pears that with an implicit controller the differentiators become
the weakest component in the control loop. Empirical data suggest
that the three parameters have to be tuned simultaneously. To
help with the tuning, we present the selection procedure that we
used. We also analyze how the experimental tracking performance
varies with the choice of the sliding surface. We hope that this
presentation raises awareness for the importance of tuning to get
the best possible performance for systems with similar setup.

In the remainder of this section, we introduce the notations. In
Section 2 we briefly recall the twisting controller in continuous-
time as well as in discrete-time. The experimental setup is pre-
sented in Section 3 as well as the control scheme. Then the ex-
perimental results are analyzed in Section 4. In Section 5, we deal
with the tuning of some control parameters and the impact it has
on the performance. In Section 6 an experimental comparison
between the twisting and a classical first order SMC is proposed.
Conclusions end the paper in Section 7.

Notations: The sliding variable is denoted by s, it is supposed to be
at least twice differentiable and Σ denotes σσ( ̇)T . The control value
changes at time instants tk, defined as ≔ +t t khk 0 for all ∈k  with

∈ +t h,0  . The scalar h is called the sampling period. Let σ σ≔ ( )tk k and
σ σ̇ ≔ ̇ ( )tk k for all ∈k . The tilded variants σ σ ̇∼ ∼, and Σ∼ denote variables
used in the controller. Let sgn be the classical single-valued signum
function: for all > ( ) = ( − ) = −x 0, sgn x 1, sgn x 1 and ( ) =sgn 0 0.

Definition 1 (Multivalued signum function). Let ∈x . The multi-
valued signum function ⇉[ − ]Sgn: 1, 1 is defined as:

⎧
⎨⎪
⎩⎪

( ) =
{ } >
{ − } <
[ − ] =

x

x

x

Sgn x
1 0

1 0
1, 1 0.

If ∈x n , then the vector-valued signum function
⇉[ − ]Sgn: 1, 1n n is defined as ( )≔( ( ) … ( ))Sgn x Sgn x , , Sgn xn

T
1 .

2. The twisting controller

2.1. Continuous-time twisting

The twisting algorithmwas one of the first second-order sliding
mode controllers presented in the literature Levant (1993). It re-
quires the control input u to be of relative degree 2 with respect to
the sliding variable s, that is

σ̈ ( ) = ( ) + ( ) ( )x t a x t b x t u, , , , 1

with the following bounds: for all ( ) ∈ × +x t, n  ,

≤ ≤ | ( )| ≤ | ( )| ≤ ( )K b x t K0 , and a x, t K . 2m M a

The control law for the twisting controller is

σ σ∈ − ( ) − ( ̇) ( )u r rSgn Sgn , 31 2

and with the conditions

⎧⎨⎩
( + ) − > ( − ) +
( − ) > ( )
r r K K r r K K
r r K K , 4

m a M a

m a

1 2 1 2

1 2

the state of the closed-loop system (1) and (3) converges to the

origin in finite time. The solutions of the closed-loop system are
defined within Filippov's framework (Filippov, 1988). Lyapunov
functions for this controller have been recently investigated, see
Orlov (2005) and Polyakov and Poznyak (2009). In this paper, we
follow the convention of using ≔G r1 and β≔r r/2 1, instead of r1 and
r2. The conditions listed in (4) impose that β< <0 1.

It is worth noting that the controller (3) is by definition mul-
tivalued and that the control input u is a selection of the closed-
loop differential inclusion formed by (1) and (3).

2.2. The two discrete-time twisting controllers

The control input obtained from a microcontroller is usually a
step function, and its value is periodically updated. We model the
control input function as ( ) =u t uk for ∈ ( ]+t t t,k k 1 . When im-
plementing this controller, the task at hand at each time instant tk
is to select the control input value from all the possible values
defined by a discretization of (1) and (3). We want the discrete-
time version to keep the multivalued nature of the controller. This
is achieved by using the implicit discretization, which applied in
(3) gives

σ β σ∈ − ( ) − ( ̇ ) ( )+ +u G Sgn G Sgn , 5k k k1 1

whereas the explicit discretization yields

σ β σ= − ( ) − ( ̇ ) ( )u G sgn Gsgn . 6k k k

Note that the relation in (6) is not an inclusion since the right-
hand side is a given singleton at time tk. The case where either sk
or σk̇ is zero is clearly pathological. Hence the signum function in
(6) is single-valued, contrarily to the continuous-time case. The
computation of the control input value is in this case straightfor-
ward from (6).

With the implicit discretization, a discrete-time version of the
dynamics (1) is required to perform the computation. We recast
the closed-loop dynamics (1) and (5) as a first order system with
state Σ σσ≔( ̇)T . In the following, the discrete-time dynamics of Σ is
supposed to be affine and given by

Σ Σ λ= + + ( )∼
+ A F B , 7k k

d
k k

d
k
d

1

where λ λ λ≔( )T
1 2 , with λ σ∈ − ( )+Sgn k1 1 and λ σ∈ − ( ̇ )+Sgn k2 1 . At

each time instant tk, we have Σ Σ= ( )tk k but Σ∼ +k 1 is in general not
equal to Σ ( )+tk 1 . If the dynamics (1) is LTI and exact, the discrete-
time dynamics obtained using a ZOH discretization is exact and
therefore Σ Σ= ( )∼

+ +tk k1 1 . The control input value at time tk is
computed as

β λ= ( )u G 1 ,k

and therefore requires the value of λ, which is obtained as the
solution of the following generalized equation

⎪

⎪⎧⎨
⎩

Σ Σ λ

λ Σ

= + +

∈ − ( ) ( )

∼

∼
+

+

A F B

Sgn 8

k k
d

k k
d

k
d

k

1

1

with unknowns λ and Σ∼ +k 1.

2.3. The implicit twisting as a generalized equation

Let us analyze this system using tools from convex analysis and
variational inequalities theory. First we introduce the normal cone,
denoted by ( )zK , to a non-empty, closed convex set K at a point

∈z K , and defined by ( ) = { ∈ ∣〈 − 〉 ≤ ∀ ∈ }z x x y z y K, 0K
n . The

equivalence λ Σ Σ λ∈ − ( )⟺ ∈ − ( )∼ ∼
+ + [− ]Sgn k k1 1 1,1 2 with

[ − ] = [ − ] × [ − ]1, 1 1, 1 1, 12 , enables us to transform (8) into the
generalized equation
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