Accepted Manuscript

Anchoring ultrafine Pd nanoparticles and SnO₂ nanoparticles on reduced graphene oxide for high-performance room temperature NO₂ sensing

Ziying Wang, Tong Zhang, Chen Zhao, Tianyi Han, Teng Fei, Sen Liu, Geyu Lu

PII: S0021-9797(17)31465-0

DOI: https://doi.org/10.1016/j.jcis.2017.12.075

Reference: YJCIS 23147

To appear in: Journal of Colloid and Interface Science

Received Date: 12 October 2017 Revised Date: 26 December 2017 Accepted Date: 27 December 2017

Please cite this article as: Z. Wang, T. Zhang, C. Zhao, T. Han, T. Fei, S. Liu, G. Lu, Anchoring ultrafine Pd nanoparticles and SnO₂ nanoparticles on reduced graphene oxide for high-performance room temperature NO₂ sensing, *Journal of Colloid and Interface Science* (2017), doi: https://doi.org/10.1016/j.jcis.2017.12.075

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Anchoring ultrafine Pd nanoparticles and SnO_2 nanoparticles on reduced graphene oxide for high-performance room temperature NO_2 sensing

Ziying Wang, Tong Zhang, Chen Zhao, Tianyi Han, Teng Fei, Sen Liu*, Geyu Lu

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun130012, P. R. China

*Corresponding authors: E-mail: liusen@jlu.edu.cn (S. Liu); Fax: +86 431 85168270; Tel: +86 431 85168385

Abstract

In this paper, we demonstrate room-temperature NO₂ gas sensors using Pd nanoparticles (NPs) and SnO₂ NPs decorated reduced graphene oxide (Pd-SnO₂-RGO) hybrids as sensing materials. It is found that ultrafine Pd NPs and SnO₂ NPs with particle sizes of 3-5 nm are attached to RGO nanosheets. Compared to SnO₂-RGO hybrids, the sensor based on Pd-SnO₂-RGO hybrids exhibited higher sensitivity at room temperature, where the response to 1 ppm NO₂ was 3.92 with the response time and recovery time being 13 s and 105 s. Moreover, such sensor exhibited excellent selectivity, and low detection limit (50 ppb). In addition to high transport capability of RGO as well as excellent NO₂ adsorption ability derived from ultrafine SnO₂ NPs and Pd NPs, the superior sensing performances of the hybrids were attributed to the synergetic effect of Pd NPs, SnO₂ NPs and RGO. Particularly, the excellent sensing performances were

Download English Version:

https://daneshyari.com/en/article/6992437

Download Persian Version:

https://daneshyari.com/article/6992437

<u>Daneshyari.com</u>