
Water hammer mitigation via PDE-constrained optimization$

Tehuan Chen a, Chao Xu a,n, Qun Lin b, Ryan Loxton b, Kok Lay Teo b

a State Key Laboratory of Industrial Control Technology and Institute of Cyber-Systems & Control, Zhejiang University, Hangzhou, Zhejiang 310027, China
b Department of Mathematics & Statistics, Curtin University, Perth, Western Australia 6102, Australia

a r t i c l e i n f o

Article history:
Received 29 January 2015
Received in revised form
18 August 2015
Accepted 18 August 2015
Available online 3 September 2015

Keywords:
Water hammer
Hyperbolic PDEs
Control parameterization
Optimal boundary control
Method of lines
Variational method

a b s t r a c t

This paper considers an optimal boundary control problem for fluid pipelines with terminal valve control.
The goal is to minimize pressure fluctuation during valve closure, thus mitigating water hammer effects.
We model the fluid flow by two coupled hyperbolic PDEs with given initial conditions and a boundary
control governing valve actuation. To solve the optimal boundary control problem, we apply the control
parameterization method to approximate the time-varying boundary control by a linear combination of
basis functions, each of which depends on a set of decision parameters. Then, by using variational
principles, we derive formulas for the gradient of the objective function (which measures pressure
fluctuation) with respect to the decision parameters. Based on the gradient formulas obtained, we
propose a gradient-based optimization method for solving the optimal boundary control problem. Nu-
merical results demonstrate the capability of optimal boundary control to significantly reduce pressure
fluctuation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

When gases and liquids are transported over long distances
through networked pipelines, flow impulses and periodic excita-
tions often induce unwanted transient dynamics. Such transient
dynamics can adversely affect working performance, and can even
destroy key components in the pipeline network, through the
generation of fluid–structure interactive vibration and noise. Wa-
ter hammer, also known as hydraulic shock, is one of the most
common transient dynamics in pipelines. It is caused by sudden
changes in the motion state, such as a complete halt or a reversal
of flow direction. The pressure wave caused by water hammer is
the main reason for pipeline noise and vibration. Mitigation stra-
tegies for water hammer are numerous and here we refer to just a
few, such as those for oil pipelines (Xu, Dong, Ren, Jiang, & Yu,
2015), air compressor pipelines (Lee & Ngoh, 2002), spacecraft
propulsion systems (Lecourt & Steelant, 2007), heat exchange
systems in nuclear reactors (Erath, Nowotny, & Maetz, 1999; Tian,
Su, Wang, Qiu, & Xiao, 2008) and even cardiovascular flow in
human blood vessels (Pedley, 1980).

This paper models water hammer mitigation by an optimal
boundary control problem governed by hyperbolic PDEs (Chen,
Ren, Xu, & Loxton, 2015). We consider the benchmark pipeline
system shown in Fig. 1, where a pipeline of length L is used to
transport fluid from a reservoir to a terminus. In the literature,
fluid flow is typically modeled using the well-known Navier–
Stokes equations; related control studies include mixing, stabili-
zation, and optimal shape design (Aamo & Krstic, 2002; Balogh,
Aamo, & Krstic, 2005). For pipelines, the simplified version of the
full Navier–Stokes model is commonly used to analyze and miti-
gate water hammer phenomena. This simplified model, known as
the pipeline transmission PDE model, is defined by the following
nonlinear hyperbolic PDE system (Ghidaoui, 2004; Wylie, Streeter,
& Suo, 1993):
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where l L0,∈ [ ] is the spatial variable, t T0,∈ [ ] is the time variable,
v v l t,= ( ) is the flow velocity, p p l t,= ( ) is the pressure drop, D is
the diameter of the pipeline, c is the wave velocity, f is the Darcy–
Weisbach friction factor, and ρ is the flow density. This model is
also widely used to simulate hydraulic dynamics in irrigation
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canals (Litrico, Fromion, Baume, Arranja, & Rijo, 2005; Mareels
et al., 2005; Ooi, Krutzen, & Weyer, 2005).

The initial conditions for system (1) are

p l p l v l v l l L, 0 , , 0 , 0, , 20 0( ) = ¯ ( ) ( ) = ¯ ( ) ∈ [ ] ( )

where p l0¯ ( ) and v l0¯ ( ) are given functions describing the initial
pressure and velocity profiles respectively. Moreover, the boundary
conditions are given by

p t P v L t u t t T0, , , , 0, , 3( ) = ( ) = ( ) ∈ [ ] ( )

where P is the pressure generated by the reservoir, and u(t) is a
boundary control function. System (1)–(3) is called the state system.
Note that u t 0( ) = corresponds to a closed valve (zero flow velocity),
and u t umax( ) = corresponds to a completely open valve (maximum
flow velocity). Since the valve is initially fully open,

u u0 . 4max( ) = ( )

Moreover, since the valve is required to be closed at the terminal
time t¼T, we impose the following terminal constraint:

u T 0. 5( ) = ( )

Finally, to ensure that the valve is not re-opened during the time
horizon, we have the following derivative constraint:

u t t T0, 0, . 6̇ ( ) ≤ ∈ [ ] ( )

Shutting off the valve suddenly will cause an oscillating pressure
wave (i.e., water hammer) to propagate through the pipeline at high

speed (Bergnt, Simpson, & Sijamhodzic, 1991). This pressure fluc-
tuation must be controlled to avoid serious pipeline damage (Asli,
Naghiyev, & Haghi, 2010; Schmitt, Pluvinage, Hadj-Taieb, & Akid,
2006). Thus, for the pipeline system shown in Fig. 1, our goal is to
choose a continuous boundary control u(t), in accordance with
constraints (4)–(6), to minimize the following objective function as
proposed in Atanov, Evseeva, and Work (1998) for open channel
flows:
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where γ is a positive integer, P̄ is a given constant, p l^ ( ) is a given
function expressing the target pressure profile along the pipeline
and p l t,( ) is the solution of the state system (1)–(3). Our optimal
boundary control problem is thus stated as: Given the system (1)
with initial conditions (2) and boundary conditions (3), choose the
boundary control u(t) to minimize the objective function (7) subject
to the initial condition (4), the terminal control constraint (5) and
the derivative constraint (6). This problem is referred to as Problem
P0.

In Chen et al. (2015), we developed a discretize-then-optimize
computational approach for solving Problem P0. This approach
involves first using the finite-difference method to approximate
the PDE model (1)–(3) by a system of ODEs, then applying control
parameterization (Teo, Goh, & Wong, 1991) to approximate the
boundary control by a piecewise-linear or piecewise-quadratic
function. We call this approach the CP-ODE approach, as it in-
volves using control parameterization to solve a conventional ODE
optimal control problem, which is obtained from the original PDE
problem via the finite-difference method.

In this paper, we propose an alternative computational ap-
proach in which control parameterization is applied directly to the
original PDE model. We refer to this new approach as the CP-PDE
approach. The advantage of CP-PDE over CP-ODE is that one layer
of approximation is removed: Problem P0 is solved directly using
control parameterization; there is no need to first approximate it
by a conventional ODE optimal control problem. Both CP-PDE and

Fig. 1. General layout of the pipeline system.

Fig. 2. Comparing the (a) existing approach in Chen et al. (2015) with the (b) new approach described in this paper.
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