Accepted Manuscript

In-situ deposition of sodium titanate thin film as anode for sodium-ion microbatteries developed by pulsed laser deposition

A. Rambabu, B. Senthilkumar, K. Sada, S.B. Krupanidhi, P. Barpanda

PII:	S0021-9797(17)31413-3
DOI:	https://doi.org/10.1016/j.jcis.2017.12.023
Reference:	YJCIS 23095
To appear in:	Journal of Colloid and Interface Science
Received Date:	10 November 2017
Revised Date:	6 December 2017
Accepted Date:	7 December 2017

Please cite this article as: A. Rambabu, B. Senthilkumar, K. Sada, S.B. Krupanidhi, P. Barpanda, *In-situ* deposition of sodium titanate thin film as anode for sodium-ion micro-batteries developed by pulsed laser deposition, *Journal of Colloid and Interface Science* (2017), doi: https://doi.org/10.1016/j.jcis.2017.12.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

In-situ deposition of sodium titanate thin film as anode for sodium-ion micro-batteries developed by pulsed laser deposition

A. Rambabu^{1, 2}, B. Senthilkumar¹, K. Sada¹, S. B. Krupanidhi² and P. Barpanda¹*

¹ Faraday Materials Laboratory, Materials Research Centre, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India.

² Quantum Structures and Device Laboratory, Materials Research Centre, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India.

> *Corresponding Author (P. Barpanda). Phone: +91-80-2293-2873; Fax: +91-80-2360-7316. E-mail id: <u>prabeer@iisc.ac.in</u>

Abstract:

Sodium-ion thin-film micro-batteries form a niche sector of energy storage devices. Sodium titanate, Na₂Ti₆O₁₃ (NTO) thin films were deposited by pulsed laser deposition (PLD) using solid-state synthesized polycrystalline Na₂Ti₆O₁₃ compound. The phase-purity and crystallinity of NTO in bulk and thin-film forms were confirmed by Rietveld refinement. Electron microscopy and atomic force microscopy revealed the formation of uniform ~100 nm thin film with roughness of ~4 nm consisting of homogeneous nanoscale grains. These PLD-deposited NTO thin-films, when tested in Na-half cell architecture, delivered a near theoretical reversible capacity close to 42 mAh g⁻¹ involving Ti⁴⁺/Ti³⁺ redox activity along with good cycling stability and rate kinetics. Na₂Ti₆O₁₃ can work as an efficient and safe anode in designing sodium-ion thin-film micro-batteries.

Download English Version:

https://daneshyari.com/en/article/6992828

Download Persian Version:

https://daneshyari.com/article/6992828

Daneshyari.com