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a b s t r a c t

Control of autonomous systems subject to stochastic uncertainty is a challenging task. In guided airdrop
applications, random wind disturbances play a crucial role in determining landing accuracy and terrain
avoidance. This paper describes a stochastic parafoil guidance system which couples uncertainty propaga-
tion with optimal control to protect against wind and parameter uncertainty in the presence of impact area
obstacles. The algorithm uses real-time Monte Carlo simulation performed on a graphics processing unit
(GPU) to evaluate robustness of candidate trajectories in terms of delivery accuracy, obstacle avoidance, and
other considerations. Building upon prior theoretical developments, this paper explores performance of the
stochastic guidance law compared to standard deterministic guidance schemes, particularly with respect to
obstacle avoidance. Flight test results are presented comparing the proposed stochastic guidance algorithm
with a standard deterministic one. Through a comprehensive set of simulation results, key implementation
aspects of the stochastic algorithm are explored including tradeoffs between the number of candidate
trajectories considered, algorithm runtime, and overall guidance performance. Overall, simulation and flight
test results demonstrate that the stochastic guidance scheme provides a more robust approach to obstacle
avoidance while largely maintaining delivery accuracy.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Current control algorithms for robotic systems are largely serial in
nature. In the classical control paradigm, a sequence of serial steps is
used to arrive at desired control inputs from feedback measurements.
Over the past five decades, significant effort has focused on develop-
ment of computationally efficient control algorithms to enable real-
time execution on embedded microprocessors for robotic systems.
Although computational performance of embedded devices continues
to rapidly increase, the emphasis on algorithm computational effi-
ciency remains a key characteristic of modern control design (for
example, see (Hellstrom, Aslund & Nielsen 2010; Kothare & Wan,
2007; Duchaine, Bouchard & Gosselin 2007)). For deterministic
systems at least, a variety of linear and nonlinear control algorithms
now exist that offer suitable tradeoffs between computational com-
plexity and performance (Blondel & Tsitsiklis, 2000).

Stochastic systems, or systems subject to large dynamic uncer-
tainty, provide a unique challenge in terms of computational com-
plexity because some element of uncertainty propagation must be
inherent in the control formulation to ensure either robustness
or optimality. In general, continuous systems subject to stochastic

uncertainty do not admit closed-form or exact optimal control solu-
tions and the certainty-equivalence principal does not hold (Blondel &
Tsitsiklis, 2000). The exception is linear systems subject to Gaussian
disturbances, in which the finite horizon optimal control problem
may be solved exactly using dynamic programming recursion (linear
quadratic Gaussian, or LQG, control). In the more general case of
continuous nonlinear systems or non-Gaussian systems, new control
formulations are needed that avoid the “curse of dimensionality”
issues associated with dynamic programming techniques (Bars et al.,
2006). In such cases, new advancements in high-throughput embe-
dded computing may provide an avenue to practical implementation
of optimal control for stochastic systems.

The thesis of this paper is that flexible optimal control algorithms
incorporating nonlinear, non-Gaussian uncertainty propagation may
be practically realizable for robotic systems through proper division of
computational effort across a heterogeneous set of onboard embedded
computing devices. By coupling standard microprocessors with emer-
ging massively-parallel computing devices, uncertainty propagation
and optimization may be performed in real-time without requiring
restrictive assumptions of linear dynamics or Gaussian uncertainty. In
this new class of optimal controllers, uncertainty propagation may be
performed through real-time Monte Carlo simulation, and an optimal
control action is determined by minimizing a cost function condi-
tioned on the resulting probability density. Recent work by Ilg, Rogers,
and Costello (2011) demonstrated the feasibility of executing real-time
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Monte Carlo simulations of air vehicle trajectories on graphics proces-
sing units (GPU's) given their data-parallel execution model.

The work described here explores this heterogeneous comput-
ing approach to stochastic control in the context of autonomous
parafoil guidance and control. Parafoils are a type of controllable
parachute used to deliver cargo and supplies to a specific target via
release from an aircraft. In general, parafoil landing accuracy is
adversely affected by unknown wind disturbances, which provide
perturbations to the system on the same order as the vehicle
airspeed. Largely as a result of wind uncertainty, current parafoil
landing accuracy is limited to approximately 100 m, which is
unsuitable for landing in environments with complex terrain or
obstacles near the target (Benney, Meloni, Cronk & Tiaden, 2009;
Tavan, 2006). Numerous authors have explored a variety of
optimal parafoil guidance strategies including model predictive
control (Slegers & Costello, 2005), direct glide slope control
(Slegers, Beyer & Costello, 2008), and parametric path optimiza-
tion (Slegers & Yakimenko, 2011; Ward, 2012; Fowler & Rogers,
2014). Gimadieva (Gimadieva, 2001) and Rademacher, Lu, Strahan,
and Cerimele (2009) have proposed alternative optimal control
strategies, the latter using modified Dubins paths. A key limitation
of these solutions is that they are based on deterministic knowl-
edge of the wind and thus may not be robust in cases of unknown
winds or wind shifts during terminal flight. A deterministic
solution may be appropriate based on the known mean wind;
however, it could be extremely sensitive to variations in the wind,
with a small change resulting in potential mission failure. For

example, using a deterministic solution the optimal impact may
occur close to an obstacle but still be considered acceptable.
However, in the presence of uncertain winds, many potential
trajectories may actually impact the obstacle. In contrast, a
probabilistic solution would determine potential trajectory sensi-
tivity to wind variation and as a result select a solution which
reduces the probability of hitting the obstacle by shaping the
terminal approach appropriately, even at the expense of slight
reductions in landing accuracy.

Recently, the authors proposed a new method for stochastic
parafoil terminal guidance in which Monte Carlo simulation is
performed in real-time on a GPU co-processor (Rogers & Slegers,
2013; Slegers & Rogers, 2013). The GPU-derived Monte Carlo
predictions are used to minimize a cost function that penalizes
both impact point accuracy and other parameters such as drop
zone constraint violations. Preliminary simulation results in
Rogers and Slegers (2013) and Slegers and Rogers (2013) showed
the ability of this guidance formulation to reshape impact disper-
sion patterns around arbitrary ground obstacles and terrain. This
paper builds upon the theoretical foundations outlined in Rogers
and Slegers (2013) and Slegers and Rogers (2013) to address
various tradeoffs in guidance system performance and explore
practical aspects of implementation. Specifically, the contributions
of this paper include a discussion of the practical aspects of
algorithm implementation on a flight vehicle, flight test results
demonstrating performance of the stochastic guidance law in
comparison to a standard deterministic guidance scheme, and an

Nomenclature

ac=T Acceleration of the parafoil mass center with respect to the inertial frame
Ci Dimensionless parafoil aerodynamic coefficients
D Distance of the turn initial point with respect to the target
ei Estimated mean miss distance for trajectory candidate i
I Inertia matrix of the parafoil-payload vehicle about the mass center
FAP ; FAS Aerodynamic forces on the parafoil and payload
FAM Force on the parafoil-payload due to apparent mass effects
FWP ; FWS Weight forces on the parafoil and payload
iT, jT, kT North-East-Down reference frame unit vectors
Ji Cost associated with trajectory candidate i
kg Cost function weight for obstacle avoidance
L Distance to target along target line
MAP ;MAS;MAM Moments from aerodynamics of the parafoil, payload, and apparent mass moments, all about the mass center
M Number of possible yaw rate values used in discretization
N Number of possible ψF values used in discretization
pi Estimated probability of obstacle impact for trajectory candidate i
R Final turn radius
Rs Number of candidate trajectories selection for Monte Carlo evaluation
s Parafoil 6DOF state vector
TIP Turn initiation point
t0 Time final turn begins
t1 Time final approach begins
t2 Time of predicted impact
Tapp Final approach time
Vh;Vz Parafoil horizontal airspeed and vertical speed
Wx, Wy Target frame wind speed components
x, y, z Parafoil inertial positions in the North-East-Down frame
_x; _y Parafoil inertial velocity components in the North-East-Down frame
ψF Final approach angle
ψ Parafoil Euler yaw angle
ψmax Maximum parafoil yaw rate
ωB=T Angular velocity of the parafoil-payload vehicle with respect to inertial frame
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