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a b s t r a c t

The existing multiple model-based estimation algorithms for Fault Detection and Diagnosis (FDD)
require the design of a model set, which contains a number of models matching different fault scenarios.
To cope with partial faults or simultaneous faults, the model set can be even larger. A large model set
makes the computational load intensive and can lead to performance deterioration of the algorithms. In
this paper, a novel Double-Model Adaptive Estimation (DMAE) approach for output FDD is proposed,
which reduces the number of models to only two, even for the FDD of partial and simultaneous output
faults. Two Selective-Reinitialization (SR) algorithms are proposed which can both guarantee the FDD
performance of the DMAE. The performance is tested using a simulated aircraft model with the objective
of Air Data Sensors (ADS) FDD. Another contribution is that the ADS FDD using real flight data is
addressed. Issues related to the FDD using real flight test data are identified. The proposed approaches
are validated using real flight data of the Cessna Citation II aircraft, which verified their effectiveness
in practice.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Presently, Fault Detection and Diagnosis (FDD) is important to
achieve fault-tolerance (Patton, 1997). For flight control systems,
sensor or actuator faults may cause serious problems. Thus, quick
detection and isolation of these faults is highly desirable (Goupil,
2011). During the last few decades, many approaches have been
proposed for aircraft actuator and sensor Fault Detection and
Isolation (FDI) (Chen & Patton, 1999; Isermann, 2005; Marzat,
Piet-Lahanier, Damongeot, & Walter, 2012). Some recent advances
and trends can be found in Zolghadri (2012) and Goupil (2011).
One recent European project, Advanced Fault Diagnosis for Sus-
tainable Flight Guidance and Control (ADDSAFE), aims to develop
FDI methods for aircraft flight control systems (Goupil & Marcos,

2014). Within this project, a number of model-based FDI methods
were tested and evaluated, refer to Varga and Ossmann (2014),
Van Eykeren and Chu (2014), Henry, Cieslak, Zolghadri, and Efimov
(2014), Alwi and Edwards (2014), Chen, Patton, and Goupil (2012),
Vanek, Edelmayer, Szabó, and Bokor (2014), Hecker and Pfifer
(2014) and Marcos (2012). However, few of these papers (Van
Eykeren & Chu, 2014) consider the FDD of the Air Data Sensors
(ADS). The ADS measure the air data information which is critical
to the pilot and to the flight control system. They are usually
mounted to the outside of the fuselage. Therefore, they can be
affected by the environment in which the aircraft is flying. Faults
of the ADS are contributing factors which have led to several
aircraft accidents. For civil aircraft, the final report of the Air
France Flight 447 accident stated that erroneous airspeed mea-
surements from the pitot probes were a contributing factor
(Lombaerts, 2010). An example for military aircraft is the cause
of the crash of a B-2 Bomber; it was found that moisture in the
port transducer units caused a large bias to the ADS (Lombaerts,
2010). These are only two examples of recent air disasters caused
by failures of the ADS system. Therefore, the FDD of the ADS is
important. Recently, Freeman, Seiler, and Balas (2013) model the
faults of the ADS using the physical air data relationships and
experimental wind tunnel data. The present paper deals with the
detection and diagnosis of the ADS faults.

One of the most effective approaches for the FDD is the
multiple-model-based approach (Zhang & Li, 1998). The basic idea
of performing FDD using the multiple-model (MM) approach is: a
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model set must be created that contains models corresponding to
different fault conditions of the monitored system. In addition
to fault models, the model set usually includes the nominal
model. There are two principal stochastic architectures based on
the MM approach (Marzat et al., 2012): the Multiple-Model
Adaptive Estimation (MMAE) and the Interacting Multiple-Model
(IMM). Both approaches require the design of a model set which
represents or covers all possible system models at any time
(Zhang & Li, 1998).

The MMAE (Eide & Maybeck, 1996; Magill, 1965; Maybeck,
1999; Ormsby, Raquet, & Maybeck, 2006) algorithm runs a bank of
filters in parallel, termed “elemental filters”. Each filter is based on
a model matching a particular fault mode of the system. If the set
of models used by the MM approach does not change, it is referred
to as a fixed model set. When coping with partial faults or
simultaneous faults, one disadvantage of the MM approach based
on a fixed model set is that the number of models needed to cover
all expected failures can be large, making implementation of a
single MM estimator impractical (Ru & Li, 2008) for real time FDD.
In order to cope with this situation, Maybeck and his research
team proposed a hierarchical structure (Maybeck, 1999) and a
moving-bank MMAE algorithm (Maybeck & Hentz, 1985; Vasquez
& Maybeck, 2004) to reduce the number of required filters online.
The hierarchical MMAE is designed for the FDD of single- and
dual-failure hypotheses. Although this approach runs Kþ1 (K is
the number for single fault FDD) models online, KðKþ1Þþ1
models have to be designed. When it is used for FDD of dual-
failure scenarios, it is assumed that the second fault occurs two or
more seconds later which allows enough time for the first fault to
be detected before the second is inserted (Eide & Maybeck, 1996).
In addition, it cannot cope with three or more simultaneous faults.
The moving-bank MMAE is also designed to avoid the potentially
large number of element filters needed for an MMAE bank. It uses
less filters to identify the parameters related to the K basic element
models. However, more than Kþ1 models are still required only
for single FDD. Ducard and Geering (2008) proposed to augment
the faults of the input as additional states, which reduces the
number of the models to only Kþ1. More recently, Lu and van
Kampen (2014) proposed to use Selective-Reinitialization (SR)
algorithms to solve the problem when the output faults are
augmented to reduce the size of the model set.

The IMM (Blom & Bar-Shalom, 1988; Li & Bar-shalom, 1996;
Zhang & Li, 1998) is another multiple-model-based approach. Its

difference from the MMAE lies in the fact that element filters in the
IMM interact with each other, which leads to a better state estima-
tion performance. Both the MMAE and the IMM display deteriorated
performance in case where the model set does not contain a model
corresponding to the true system (Hallouzi, Verhaegen, & Kanev,
2009). The model set can become very large when dealing with
multiple faults. Li and Bar-shalom (1996) proposed a variable
structure IMM with an adaptive model set. The expected-mode
augmentation (Li & Jilkov, 2001) is used to adaptively change the
model set. However, to cope with partial faults, an extra feature
needs to be added to the IMM. Ru and Li (2008) used a maximum
likelihood estimator to estimate the extent of the faults after the
detection of a fault using the IMM. In addition, to cope with two or
more simultaneous faults, the number of expected modes will
increase which makes the model set larger.

The drawbacks of a large model set are as follows: firstly, it
brings a high computational load which increases with the number
of models. This is also the reason why many approaches were
proposed to reduce the model set; secondly, a large model set
could lead to models being similar to one another in terms of
input–output behavior, which could lead to performance deteriora-
tion of the MM approaches (Hallouzi et al., 2009; Zhang & Li, 1998).

In this paper, a novel approach called DMAE is proposed for the
output FDD. This approach reduces the number of the models in the
model set to only two, regardless of K and whether there are partial
faults or simultaneous output faults. The two models used in this
approach are the no-fault model and the fault model. The states of the
fault model are augmented by the K output fault scenarios rather than
one fault scenario. Augmenting the output faults as states may lead to
reconstructibility problems; this is solved by using the SR scheme.
Two SR algorithms are proposed to guarantee the performance of the
DMAE approach. The elemental filters are designed based on an
Unscented Kalman Filter (UKF) (Julier & Uhlmann, 1997), which uses
the direct nonlinear model without linearization and can achieve
higher order accuracy. The performance of the two proposed double-
model-based approaches is compared to the multiple-model-based
approach as well as to each other. The example is the FDD of the ADS
faults of a Cessna Citation II CE-500 aircraft model. In order to
demonstrate the performance, different fault scenarios are considered,
including a single fault and simultaneous faults, small faults and big
faults, bias faults and drift faults.

A second contribution of this paper is the application of the
proposed approach to the ADS FDD using real flight test data. It

Nomenclature

Ax, Ay, Az linear accelerations along the body axis, m=s2

p, q, r roll, pitch and yaw rate along the body axis, rad/s
Vt true airspeed, m/s
α, β angle of attack, sideslip angle, rad
γ innovation of the filter
ϕ, θ, ψ roll, pitch and yaw angles along the body axis, rad
a, ai fault scenarios and the ith fault scenario
x̂, P state estimate and covariance of state estimation error
pt, x̂t , Pt model probability, state estimate and covariance of

state estimate error of all the elemental filters
pnf, x̂nf , Pnf model probability, state estimate and covariance of

state estimate error of the no-fault filter
paf, x̂af , Paf model probability, state estimate and covariance of

state estimate error of the fault filter
fo output fault
fV, f α, f β faults in the velocity sensor, angle of attack sensor and

angle of sideslip sensors

pi model probability of the ith elemental filter
f̂ i, f i fault estimation and the probability-weighted fault

estimation of the ith elemental filter
f̂ o;i, f o;i estimation and probability-weighted estimation of the

output fault of the ith elemental filter
pm, To threshold for detecting a fault and isolating the output

faults, respectively
imax index of the model with the maximum model

probability
n, b, l, m dimension of the state, input, output and output faults

respectively

Subscripts

i, j variable number
k time step
ff fault free
af augmented fault
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