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a b s t r a c t

An adaptive recursive process modeling approach is developed to improve the accuracy of modeling
time-varying processes. We adopt the exponential weighted moving average approach to update the
covariance and cross-covariance of past and future observation vectors. Forgetting factors are adjusted in
the recursive modeling process based on the residual of model outputs. To ensure the stability of the
identified model, we introduce a constrained nonlinear optimization approach and propose a stable
recursive canonical variate state space modeling (SRCVSS) method. The performance of the proposed
method is illustrated with an open-loop numerical example and simulation with the closed-loop data
from a continuous stirred tank heater (CSTH) system. The results indicate that the accuracy of proposed
SRCVSS modeling method is higher than that of state space modeling with traditional canonical variate
analysis.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

For the past decades, subspace identification methods have
attracted interest for process modeling, monitoring and control.
The conventional subspace identification methods include canoni-
cal variate analysis (CVA), Numerical algorithms for Subspace State
Space System IDentification (N4SID), and Multi-variable Output-
Error State sPace (MOESP) (Qin, 2006). According to the unifying
theory proposed by Van Overschee and De Moor (1996), these
algorithms can be interpreted as singular value decomposition of a
weighted matrix. Juricek, Seborg, and Larimore (2005) demon-
strated that subspace models based on CVA and N4SID outper-
formed regression models based on partial least squares (PLS) and
constrained categorical regression. They also demonstrated that the
CVA model was more accurate than N4SID. Negiz and Cinar (1997)
compared the application of PLS regression, balanced realization
and canonical variate state space (CVSS) modeling technique in
identifying stationary vector autoregressive moving average type of
time series models in state space. They reported that balanced
realization and PLS do not provide optimal state variables that are
orthogonal, but orthogonal states' PLS and CVSS realization give
minimal state variables that are orthogonal.

CVA was first developed by Larimore (1990). There are many
successful examples for applying the CVA approach. Pilgram, Judd,
and Mees (2002) used CVA for the description of random pro-
cesses. Akaike (1998) applied the concept of canonical correlation
analysis to stochastic realization theory and system identification.
Larimore and Baillieul (1990) described a CVA approach for state
space identification and filtering of linear and nonlinear systems.
Negiz and Cinar (1997a) applied CVSS model to multivariable
statistical monitoring and illustrated its performance in milk
pasteurization process. Stubbs, Zhang, and Morris (2012) applied
CVA to fault detection and diagnosis and used the Tennessee
Eastman (TE) process simulator for case studies. Juricek, Seborg,
and Larimore (2004) applied CVA to modeling a nonlinear con-
tinuous stirred tank reactor. CVA shows good modeling perfor-
mance for linear processes and stationary operating conditions,
but many processes are time-varying and often face changes in
process operating conditions. Thus, it is necessary to develop a
recursive method for model adaptation to changes in the mode of
operation of time-varying processes.

Mercère, Bako, and Lecœuche (2008) developed a recursive for-
mulation of the MOESP identification approach. Mercère and Lovera
(2007) proposed online implementation of the MOESP methods
based on instrumental variable versions of the propagator technique
for signal subspace estimation. Lovera, Gustafsson, and Verhaegen
(2000) proposed several recursive formulations for the MOESP
algorithms. Wu, Yang, and Song (2008) proposed a recursive subspace
identification method for predicting time-varying stochastic systems,
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which is to estimate the Toeplitz matrices by using the Vector Auto
Regressive with eXogenous input (VARX) models. Kameyama and
Ohsumi (2005) proposed a subspace method for predicting time-
invariant or varying stochastic systems in the 4SID framework. Pavel
and Vladimir (2006) proposed a different online recursive identifica-
tion approach based on the interpretation of 4SID methods in the
least squares sense. Houtzager, vanWingerden, and Verhaegen (2012)
presented a recursive identification approach with constant forgetting
factor based on predictor-based subspace methods in either open-
loop or in closed-loop. Lee and Lee (2008) proposed a state space
model based on CVA using mean, covariance, and correlation updat-
ing with variable forgetting factor based on the norm between two
consecutive measurements. Although the variable forgetting factor
was adopted, we still do not know how much the values should be
changed to reduce the residual between the model outputs and
measurements. To our best knowledge, no constraint conditions are
used in the methods mentioned above to ensure the stability of the
recursive model.

Measurement noise, plant-model mismatch and nonstationary
disturbances acting on a time-varying and/or nonlinear process
may cause a recursive model to become unstable even though the
process is stable. The coefficient matrices of state space model
need to be updated with every new measurements set under the
condition that the identified model is stable. In this paper, we
focus on adaptive system identification based on canonical vari-
ates and introduce a nonlinear constrained optimization method
to ensure the stability of the recursive model. To obtain models
that accurately reflect the current dynamics of the system and
forecast well, we propose a new method for adjusting the forget-
ting factor based on the residual of model outputs. Then we
propose an approach based on stable recursive canonical variate
state space (SRCVSS) modeling and illustrate its performance with
simulation of the continuous stirred tank heater (CSTH) system.

The remainder of the paper is organized as follows. Section 2
reviews the state space modeling based on conventional CVA.
Section 3 presents the SRCVSS modeling technique, and proposes a
new method to adjust the forgetting factor based on the residual
between model outputs and real measurements. Section 4 pre-
sents a numerical example to illustrate the consistent estimation
of eigenvalues of state matrix. Section 5 outlines the CSTH process
simulator and illustrates the stability of the identified model and
performance of SRCVSS method for time-varying processes. Simu-
lation results compared with that of CVA are also given. Conclu-
sions are presented in Section 6.

2. State space modeling based on canonical variate analysis

The multivariable state space model can be expressed as (Qin,
2006)

xðkþ1Þ ¼AxðkÞ þBuðkÞ þKeðkÞ ð1Þ

yðkÞ ¼ CxðkÞ þDuðkÞ þeðkÞ ð2Þ

where xðkÞARn, uðkÞARmu and yðkÞARmy are state, input and
observation vectors at sampling time k, AARn�n, BARn�mu ,
CARmy�n, DARmy�mu and KARn are state matrix, input matrix,
output matrix, direct feed-through matrix and Kalman gain
matrix, respectively. eðkÞ is stochastic disturbance, which is
assumed to be zero-mean, normally distributed white noise.

An invertible linear transformation of the state does not change
the input–output behavior of a state-space system. Therefore, we
can only determine the system matrices up to a similarity
transformation TARn�n, T�1AT, T�1B, T�1K, CT and D. The
identification problem can be formulated as: given the input
sequence u, output sequence y, find all system matrices A, B, C,

D, and K, if they exist, up to a global similarity transformation
recursively (Houtzager, van Wingerden, & Verhaegen, 2009b).

In the CVA approach, the measurement vector is expanded by
past and future measurements, to form the past, extended past
and future observation vectors zpðrÞ, zþpðrÞ and yf ðrÞ, respectively,
where r denotes a generic index:

zpðrÞ ¼
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yf ðrÞ ¼
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⋮
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ARmy �f ð5Þ

where p and f represent the length of the past and future
observation windows, respectively. In general, f rp (Houtzager
et al., 2009b, 2012).

Following the terminologies and equations in Odiowei and Cao
(2010) and setting r¼ pþ1; pþ2;…; pþN , the past and future
Hankel matrices ZpARðmu þmyÞp�N and Yf ARmyf�N are defined as

Zp ¼ ½zpðpþ1Þ zpðpþ2Þ ⋯ zpðpþNÞ� ð6Þ

Yf ¼ ½yf ðf þ1Þ yf ðf þ2Þ ⋯ yf ðf þNÞ� ð7Þ
For a set of variables measured by l observations, the last two

elements of zpðpþ1Þ in Eq. (3) is yð1Þ;uð1Þ, whereas the last element
of yf ðf þNÞ in Eq. (5) would be yðlÞ. Therefore, the maximum number
of columns of these Hankel matrices is N¼ l�p� f þ1.

The covariance and cross-covariance matrices of the past and
future observations can be computed by using

Σpp≔ZpZT
p=ðN�1Þ ð8Þ

Σff≔YfY
T
f =ðN�1Þ ð9Þ

Σfp≔YfZ
T
p=ðN�1Þ ð10Þ

CVA finds the best linear combinations between aTyf ðrÞ, aARmyf

and bTzpðrÞ, bARðmu þmyÞp so that the correlation between the past and
future observations is maximized (Odiowei & Cao, 2010):

ρfpða; bÞ ¼
aTΣfpb

ðaTΣff aÞ1=2ðbTΣppbÞ1=2
ð11Þ

Define u¼Σ1=2
ff a and v¼Σ1=2

pp b. The optimization to determine
u and v can be represented as

max
u;v

uT ðΣ�1=2
ff ΣfpΣ�1=2

pp Þv

s:t: uTu¼ 1; vTv¼ 1 ð12Þ
The solution of the optimization problem can be obtained

through the singular value decomposition (SVD) of the scaled
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