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ABSTRACT

In complex colloidal systems, particle-poor regions can develop within particle-rich phases during sedi-
mentation or creaming. These particle-poor regions are overlooked by 1D profiles, which are typically
used to assess particle distributions in a sample. Alternative methods to visualise and quantify these
regions are required to better understand phase separation, which is the focus of this paper. Magnetic
resonance imaging has been used to monitor the development of compositional heterogeneity in a
vesicle-polymer mixture undergoing creaming. T, relaxation time maps were used to identify the distri-
bution of vesicles, with vesicle-poor regions exhibiting higher T, relaxation times than regions richer in
vesicles. Phase separated structures displayed a range of different morphologies and a variety of image
analysis methods, including first-order statistics, Fourier transformation, grey level co-occurrence matri-
ces and Moran’s I spatial autocorrelation, were used to characterise these structures, and quantify their
heterogeneity. Of the image analysis techniques used, Moran’s I was found to be the most effective at
quantifying the degree and morphology of phase separation, providing a robust, quantitative measure
by which comparisons can be made between a diverse range of systems undergoing phase separation.
The sensitivity of Moran’s I can be enhanced by the choice of weight matrices used.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CCBY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Many consumer and pharmaceutical products are based on col-
loidal suspensions [1-3], but density differences between the par-
ticles and fluid can lead to sedimentation or creaming which will
affect the “shelf-life” of such products. Polymers are frequently
added to suspensions to enhance the shelf-life of the product, as
well as its efficacy or dispensability [2]. However, adding a non-
adsorbing polymer can cause particles to aggregate, via depletion
flocculation, causing a gel to form and changing the rate and mech-
anism of phase separation [3]. By observing suspensions over time,
it is possible to better understand phase separation processes,
enabling the sedimentation and re-suspendability of a system to
be assessed and predicted [1]. For example, creaming in vesicle-
polymer mixtures has been studied by using visual inspection
[3,4] and optical characterisation [5] to monitor the development
of the vesicle-poor, vesicle-rich interface over time. However, visu-
alising phase separation in these suspensions is often difficult, as
they are frequently opaque [1].

Magnetic resonance imaging (MRI), however, provides a means
by which sedimentation and creaming can be observed, non-
invasively, in opaque systems [1,2,6-13]. Previously, 'TH MR images
of spin density have been used to study sedimentation of polymer
particles [2,6] and paliperidone palmitate particles [1], and T,
relaxation time maps have been used to study sedimentation of
polymer particles [10,11], glass beads [10] and rayon fibres [9] as
well as separation of asphaltenes from crude oil [7] and phase sep-
aration in moisturising creams [8]. Chemical shift imaging has also
been used to investigate sedimentation and creaming in biodiesel
[12] and multinuclear (*H and '°F) MRI has been used to study sed-
imentation of polymer particles [13]. In these studies, phase sepa-
ration has been predominantly probed using vertical profiles of
MRI signal intensity, relaxation time or volume fraction, identify-
ing regions either rich or poor in suspended particles. By monitor-
ing these profiles over time, the rate of phase separation can be
determined [1,2,7]. However, this approach assumes that the vol-
ume fraction of particles only varies vertically, controlled by the
direction of gravity, and that there is a complete separation of
the different phases, which may not be the case [3,6]. Particle-
poor regions within the particle-rich phase have been identified
in sedimentation [6] and creaming [3,4] in colloidal suspensions,
particularly in suspensions with viscoelastic properties [6]. Yet,
these regions are overlooked in 1-dimensional (1D) profiles and
analysis, but must be visualised and quantified in order to gain
meaningful insight into phase separation processes [6].

By using 2-dimensional (2D) MRI, phase separation can be bet-
ter monitored and, through image analysis, quantified. An example
of such image analysis is segmentation [14], where regions of sim-
ilar composition can be identified within a sample by comparing
the signal intensity or T, relaxation time, for a pixel, to a threshold
value. This method could provide a means by which the amount of
phase separated material may be quantified and can lead to an
increase in image contrast and a simplification of features within
the MR image [14,15]. Other forms of segmentation include cluster
analysis [16], which looks for regions of homogeneous signal inten-
sity, and independent component analysis (ICA) [16,17], which
identifies statistically independent groups of pixels. However, the
information available by segmentation can be limited and is
dependent on the technique chosen. Alternative image analysis
techniques include methods based on Fourier transformations or
wavelet transformations [18], which determine the spatial fre-
quency of heterogeneity in pixel intensities. These methods can
distinguish both fine (high frequency) and coarse (low frequency)
features in an image [19]. For example, wavelet transformation
allows spatial information to be extracted at specific length scales

[20] and can be monitored over time. However, these methods do
not easily provide a quantifiable measure by which samples can be
compared.

Image analysis methods based on first order statistics have been
employed in medical imaging [21], and can be used to describe the
distribution of pixel intensities and differentiate between homoge-
neous and heterogeneous images. Unfortunately, they are unable
to provide information about the relative position of features or
their connectivity [21]. First order statistics of MRI data have been
used to distinguish between healthy and tumorous brain tissue
[22]. Other statistical methods include grey level run length matri-
ces (GLRLM) and grey level co-occurrence matrices (GLCM) which
assess the probability that specific grey levels occur within a spec-
ified spatial relationship and allow the calculation of various
parameters, such as local homogeneity, contrast and entropy of
the pixel intensities [21,23,24]. However, the number of grey levels
chosen in these analyses may affect the result. While using fewer
grey levels makes the calculation less computationally demanding,
it can also result in a loss of image detail [25].

Image analysis methods using segmentation, transformation
and statistical methods have yielded useful information from MR
images, however, they can discard useful information about the
spatial localisation of the features, be difficult to interpret or over
simplify features within an image. An approach used to overcome
the limitations of these image analysis methods, is autocorrelation,
which quantifies the heterogeneity or clustering in an image. Spa-
tial autocorrelation determines whether an observed variable, at a
particular location, is significantly dependant on the value of that
variable in a neighbouring region [26]. By quantifying the spatial
autocorrelation of a parameter, it is possible to determine whether
the data is clustered, as well as quantify how strongly it is clus-
tered [16]. There are a variety of measures of spatial autocorrela-
tion including Moran’s I [27], Geary’s C [28] and Getis and Ord
Gi* [29], enabling the spatial distribution of a variable to be quan-
tified using a single number. The most widely used of these mea-
sures is Moran’s I, which has been applied to analyse optical
images [30], X-ray CT images [31-33] and clinical MR images
[16,30,31,34,35]. This method provides a simple means of assess-
ing the degree of spatial autocorrelation, with values ranging from
—1, for negative correlations, to 1, for positive correlations. As
shown in the images in Fig. 1, increased clustering leads to higher
values of Moran’s I. Where pixel intensities are randomly dis-
tributed, Moran’s I is equal to 0, and more alternating features lead
to lower, more negative, values of Moran’s I [34,36].

In the MRI studies, Moran’s I has been used to assess noise
levels [30,31,35], study neural networks [16] and distribution of
fat in muscles [34]. In the study by Derado et al. [16], Moran’s I
was used to investigate neural networks, which were identified
using segmentation techniques. Spatial clustering of fat, in MR
images of muscles, has also been quantified using Moran’s I [34].
However, Moran’s I has not yet been employed to quantify the
amount of heterogeneity within an MR image or characterise the
compositional heterogeneity of complex fluids.

In this paper, a vesicle-polymer mixture undergoing creaming
was visualised over time using 2D MRI, which revealed vesicle-
poor regions with the vesicle-rich phase. The resulting 2D MR
images were analysed using first-order statistics, Fourier transfor-
mations, GLCM and Moran’s I. The results were compared between
all image analysis methods and their potential for quantifying
phase separation and spatial heterogeneity was assessed. A
detailed description of the Moran’s I calculation is presented and
explained. Different spatial weight matrices were evaluated and
it was found that careful selection of the spatial weight matrix
made it possible to quantify smaller structures than have been pre-
viously accessible [34] using this method.
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