

Contents lists available at ScienceDirect

Journal of Colloid and Interface Science

journal homepage: www.elsevier.com/locate/jcis

Regular Article

Nitrogen, phosphorus dual-doped molybdenum-carbide/molybdenumphosphide-@-carbon nanospheres for efficient hydrogen evolution over the whole pH range CrossMark

Jing-Qi Chi^a, Wen-Kun Gao^{a,b}, Jia-Hui Lin^{a,b}, Bin Dong^{a,b,*}, Kai-Li Yan^a, Jun-Feng Qin^a, Zi-Zhang Liu^{a,b}, Yong-Ming Chai^a, Chen-Guang Liu^{a,*}

^a State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, PR China ^b College of Science, China University of Petroleum (East China), Qingdao 266580, PR China

ARTICLE INFO

Article history: Received 6 September 2017 Revised 4 November 2017 Accepted 8 November 2017 Available online 10 November 2017

Keywords: MoP Mo₂C Core-shell N,P-doping Electrocatalyst Hydrogen evolution reaction

ABSTRACT

 $MoO_4^{2-}@$ aniline-pyrrole ($MoO_4^{2-}@$ polymer) spheres as precursors have been used to synthesize unique core-shell nanostructure consisting of molybdenum carbide and molybdenum phosphide composites encapsulated into uniformly dual N, P-doped carbon shells ($Mo_2C/MOP@NPC$) through a facile two-step strategy. Firstly, porous core-shell N-doped $Mo_2C@C$ ($Mo_2C@NC$) nanospheres have been synthesized with ultrafine Mo_2C nanoparticles as core and ultrathin NC as shell by a annealing route. Secondly, $Mo_2C/MOP@NPC$ has been obtained maintaining intact spherical-like morphology through a phosphidation reaction in high temperature. The synergistic effect of Mo_2C and MOP may reduce the strong Mo-H bonding energy of pure Mo_2C and provide a fast hydrogen release process. In addition, the dual N, P-doped carbon matrix as shell can not only improve the electroconductivity of catalysts but also prevent the corrosion of $Mo_2C/MOP@NPC$ shows excellent catalytic activity and durability, which only needs an overpotential of 160 mV to drive 10 mA cm⁻². Moreover, it also exhibits better HER performance in basic and neutral media with the need for overpotentials of only 169 and 228 mV to achieve 10 mA cm⁻², respectively. This inorganic-organic combination of Mo-based catalysts may open up a new way for water-splitting to produce large-scale hydrogen.

© 2017 Published by Elsevier Inc.

* Corresponding authors at: State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, PR China (B. Dong). *E-mail addresses:* dongbin@upc.edu.cn (B. Dong), cgliu@upc.edu.cn (C.-G. Liu).

1. Introduction

The widespread use of Hydrogen (H₂) has been considered as a promising substitute as energy carrier to replace non-renewable fossil fuels due to its renewability, zero carbon emission and high energy density [1-5]. Water splitting is an effective strategy for the production of highly pure hydrogen, in which highly active electrocatalyst that can decrease the overpotential is demanded to obtain high efficiency [6-11]. As we known, Pt-based electrocatalysts have been considered as the most efficient catalysts because it can produce large cathodic current densities with a nearly zero overpotential. However, the low abundance and high cost of Pt noble metal severely limit its global-scale applications on earth [12-15]. Motivated by this aspect of challenge, developing low-cost and earth-abundant catalysts to replace Pt is urgently needed for large-scale application [16,17].

Transition metal Mo-based alternatives, including Mo₂C [18,19], MoP [20,21], MoN [22] and MoS₂ [23-26] as well as a series of nonmetal N, P-doped carbon materials have been widely developed as effective HER electrocatalyst. To improve the intrinsic activity of Mo-based electrocatalysts especially for representative high active Mo₂C and MoP, two strategies usually has been adopted including designing uniform nanostructures and tuning chemical composition by doping metal or non-metal element [27,28]. To expose more density of surface reactive sites and improve the conductivity of Mo-based electrocatalysts, many efforts have been devoted to construct various nanostructures like nanowires [29], nanosheets [30] and nanoparticles [31] with rich porosity. However, controllable synthesis of nanostructured metal carbides or phosphides with small nanoparticles and rich porosity towards high HER performance still keeps a great challenge, because carbonization or phosphorization at high temperature during synthesis process may lead to inevitable aggregation of Mo-based-compound nanoparticles, thus reducing their exposed active sites and specific surface area [19]. So it is desirable to synthesize well-defined Mo-based-compound nanostructures to avoid sintering and aggregating at high temperature and to expose sufficient active sites for improving the intrinsic HER activity.

It is well known that the hydrogen-binding free energy (ΔG_{H_*}) can serve as a good symbol of the intrinsic activity for HER [32]. The intrinsic activity of pure Mo₂C or MoP is restricted by the strong interaction between active phase and H_{ads} [33]. Metal or non metal doping by tuning chemical composition to produce optimal ΔG_{H_*} is another paramount way to fabricate highly effective HER electrocatalysts [34]. Utilizing the synergistic effect among bimetal compounds, now many efforts have been devoted to the regulation of metal composition, such as NiMoS [35], CoMoS [36], CoMoN [37] and FeCoP [38]. While non metal elements such as N, P and S doping with low electronegativity as a ideal choice to weak Mo-H binding energy is also an alternative method to improve the intrinsic activity for HER, especially for the combination of catalytically active metal carbides and phosphides contributing to a synergistically excellent electrocatalytic activity [17,39]. For example, Li's group synthesized an electrocatalyst composed of MoP and Mo₂C composite coated by few-layer Ndoped graphitic carbon shells exhibiting excellent HER performance over the whole range of pH [40]. Although limited progress has been made, such combination is still a great challenge because there exists difficulty to combine carbonization and phosphorization at high temperature. So it is highly desirable to design and fabricate hybrid of Mo₂C/MoP nanostructures to realize optimal Mo—H bonding energy for efficient HER.

Herein, we have designed and synthesized the first composite HER catalyst composed of hybrids of Mo₂C and MoP nanospheres encapsulated into dual N, P-doped carbon matrix by a facile twostep method. Firstly, the Mo₂C@NC is obtained by the first step of carbonization process with the ultrafine Mo₂C nanoparticles as core and ultrathin NC as shell. Secondly, a second step of phosphorization reaction is adopted to form mixture of Mo₂C and MoP coated by few-layer dual N, P-doped carbon shells. Such composite electrocatalyst exhibits excellent HER performance over the whole pH range with the low overpotential of 160, 169 and 228 mV achieved at a current density of 10 mA cm⁻² in the acidic, basic and neutral media, respectively.

2. Experimental

2.1. Synthesis of MoO_4^{2-} @polymer nanospheres

All chemicals were used as-obtained without further purification. The organic-inorganic hybrids of MoO₄²⁻@polymer nanospheres were synthesized in the presence of surfactant as template. In a typical synthesis, 1.98 g (NH₄)₆Mo₇O₂₄·4H₂O and 0.12 g Triton X-100 were dispersed in 40 ml deionized water. Then 0.4 g aniline and 0.3 g pyrrole were dropped into the above mixed solution slowly with magnetic stirring for 0.5 h and ultrasonication for 0.5 h to form a homogeneous solution. After that, the aqueous solution of 2 g (NH₄)₂S₂O₈ precooled at 0–2 °C for 0.5 h was added into the above aqueous solution in one portion. Then the polymerization reaction was allowed to proceed for 12 h at 0–2 °C. Finally, the obtained sample was washed with ethanol and deionized water for several times and dried under vacuum at 60 °C for 12 h. The synergistic effect between aniline and pyrrole plays critical role for the formation of MoO_4^{2-} @polymer nanospheres. As we know, pyrrole and aniline possess different hydrophobic properties, so aniline and pyrrole comonomers diffuse into different positions of the micelles after adding Triton X-100 template. When oxidation is added, polymerization of pyrrole and aniline occurs at the interface of water and micelle thus forming spherical-like nanostructures, and at the same time MoO_4^{2-} enters into various position of nanospheres to form homogeneous distributed MoO_4^{2-} @polymer.

2.2. Synthesis of Mo₂C@NC nanospheres (Mo₂C@NC)

The cubic $Mo_2C@NC$ nanospheres were prepared by pyrolyzing above obtained $MoO_4^{2-}@$ polymer nanospheres under argon atmosphere at 650 °C for 3 h with a temperature ramp of 5 °C min⁻¹.

2.3. Synthesis of hybrids of Mo₂C/MoP@NPC nanospheres (Mo₂C/ MoP@NPC)

To obtain Mo₂C/MoP@NPC, the as-prepared Mo₂C@NC (0.1 g) and 2 g of NaH₂PO₂ were put into a porcelain boat and calcined at 750 °C under argon atmosphere for 2 h. During the process of phosphorization, partial Mo₂C or MoO₂ species may be converted into high active MoP, which may be favorable for enhanced HER performance.

2.4. Synthesis of hybrids of N, P co-doped carbon nanospheres (NPC)

To obtain NPC, the polymer nanospheres without adding $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ (0.1 g) and 2 g of NaH_2PO_2 were put into a porcelain boat and calcined at 750 °C under argon atmosphere for 2 h.

2.5. Characterizations

X-ray diffraction (XRD) patterns were collected on a X'Pert PRO MPD system equipped with a Cu K_{α} radiation source (λ = 0.154 Å). Download English Version:

https://daneshyari.com/en/article/6993432

Download Persian Version:

https://daneshyari.com/article/6993432

Daneshyari.com