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a b s t r a c t

In model-predictive control (MPC), achieving the best closed-loop performance under a given compu-
tational capacity is the underlying design consideration. This paper analyzes the MPC tuning problem
with control performance and required computational capacity as competing design objectives. The
proposed multi-objective design of MPC (MOD-MPC) approach extends current methods that treat
control performance and the computational capacity separately – often with the latter as a fixed con-
straint – which requires the implementation hardware to be known a priori. The proposed approach
focuses on the tuning of structural MPC parameters, namely sampling time and prediction horizon
length, to produce a set of optimal choices available to the practitioner. The posed design problem is then
analyzed to reveal key properties, including smoothness of the design objectives and parameter bounds,
and establish certain validated guarantees. Founded on these properties, necessary and sufficient con-
ditions for an effective and efficient optimizer are presented, leading to a specialized multi-objective
optimizer for the MOD-MPC being proposed. Finally, two real-world control problems are used to il-
lustrate the results of the tuning approach and importance of the developed conditions for an effective
optimizer of the MOD-MPC problem.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Model-predictive control (MPC) is a typically computationally
expensive method of approaching the control of constrained sys-
tems. As a result, the computational capacity required at each
sampling instant is a consideration in the overall design process.
This is particularly true in systems with fast dynamics, where
there is often significant conflict between the complexity of the
problem considered at each time step and the available time to
find a solution. The close interrelation between control perfor-
mance and required computational capacity warrants that these
indices are analyzed in synchrony to streamline the design process
and avoid unnecessary costs. Both objectives depend on a number
of tuning parameters of the optimal control problem including, but
not limited to, the sampling time, prediction horizon length, and
fidelity/order of the prediction model.

Previously, much focus has been given to find the best control

performance in a single-objective optimization design problem,
separate to the consideration of the required computational ca-
pacity. However, there are still a number of knowledge gaps in
existing MPC tuning approaches. MPC tuning for control perfor-
mance is mostly done via methods that rely on rules-of-thumb
and general guidelines (Garriga & Soroush, 2010; Qin & Badgwell,
2003; Rani & Unbehauen, 1997). Further developments have been
made consequently, based on metaheuristics such as particle
swarm optimization (Júnior, Martins, & Kalid, 2014) and genetic
algorithms (van der Lee, Svrcek, & Young, 2008), as well as gra-
dient descent in run-time with imperfect plant model for the
single-objective performance optimization of MPC (Bunin, Fraire,
François, & Bonvin, 2012).

Several multi-objective optimization approaches for control
system design have also been studied for the optimization of
control performance. Similar to that of the single-objective coun-
terpart, metaheuristic methods are prevalently used for the multi-
objective tuning of classical control, such as PID (Ayala & dos
Santos Coelho, 2012; Reynoso-Meza, García-Nieto, Sanchis, &
Blasco, 2013), sliding mode control (Mahmoodabadi, Taher-
khorsandi, & Bagheri, 2014; Taherkhorsandi, Mahmoodabadi, Ta-
lebipour, & Castillo-Villar, 2014), as well as others (Reynoso-Meza,
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Blasco, Sanchis, & Martínez, 2014). A similar approach is applied in
MPC tuning by using an off-the-shelf method of goal attainment
(Exadaktylos & Taylor, 2010; Vega, Francisco, & Tadeo, 2008). Al-
though more systematic than general guidelines, these methods
provide non-specialized approaches that do not exploit certain
characteristics of the problem and potentially require a rather
exhaustive and possibly computationally impractical search to
produce an optimal design set. As an alternative to approaches
based on guidelines and metaheuristics, analytical methods em-
ploying problem simplifications have been proposed (Bagheri &
Khaki-Sedigh, 2014; Shah & Engell, 2011; Shridhar & Cooper, 1998).
However, these typically overlook some aspects of the original
problem such as explicit constraint handling.

The studies discussed so far consider control performance as
the sole design objective, whether with a single- or multi-objec-
tive tuning outlook. The approach separates algorithm and im-
plementation design, revealing only half the insight in control
tuning. Implementation design largely determines the hardware
cost for the controller and is often not known a priori, thus is an
important part of the process. A co-design approach provides a
more comprehensive approach that optimizes control perfor-
mance, as well as implementation cost that is dictated by the re-
quired computational capacity to implement the control in real-
time. Rather than treating the required capacity as a fixed con-
straint, it should be co-optimized alongside control performance,
avoiding system over-design or the need to re-design the system.
Furthermore, previous studies (e.g. Bagheri & Khaki-Sedigh, 2014;
Exadaktylos & Taylor, 2010; Júnior et al., 2014) have typically as-
sumed the structural parameters of the controller – such as sam-
pling rate and prediction horizon – are fixed. Nonetheless, struc-
tural MPC parameters have been shown to have an underlying role
for MPC design improvement (Bachtiar, Kerrigan, Moase, & Man-
zie, 2015, 2016).

In light of the above discussion, the value of a co-design ap-
proach in streamlining the design process of control systems has
been noted (Allison & Herber, 2014). Further, the fundamental
concept of a software and hardware co-design approach for real-
time optimization has been studied (Kerrigan, 2014), although
analytical results to support applications in MPC are still yet to be
fully developed. The main contribution of this paper is a sys-
tematic development of the optimal MPC design with a multi-
objective approach. Theoretical results concerning the nature of
the design problem are presented to establish certain assumptions
and guarantees. These results are then used to understand the
nature of the optimization problem at hand and subsequently
provide conditions that a selected optimizer must satisfy in order
to effectively and efficiently compute the optimal (Pareto) frontier.
The approach allows the practitioner to understand the trade-off
between performance and resources in structurally tuning an MPC
controller for a given real-world control problem.

The paper is outlined as follows; Section 2 contains the MPC
formulation studied. The proposed multi-objective MPC design
approach is then presented in Section 3. Section 4 identifies the
key properties of the multi-objective problem, including smooth-
ness properties and parameter bounds. In Section 5, conditions for
an effective and efficient optimizer are presented and a compliant
algorithm is proposed. Section 6 considers two real-world ex-
amples to demonstrate the design approach and importance of the
conditions developed for an effective optimizer. Section 7 presents
conclusions of the study and potential future work.

1.1. Notational conventions and definitions

≔ Mv v vM
2 T . ⊗ and ⊘ denotes element-wise multiplication and

division, respectively. [ ]a bU , is a random number uniformly dis-
tributed between a and b. Unless stated otherwise, an ordered list

(column vector) is boldfaced e.g. v with the size | |v and elements
≔( … )| |v vv , , v1 . A set containing several ordered lists is defined in

calligraphy e.g. and { }≔ … | |v v, ,1 .

2. Controller design

Consider a nonlinear dynamic plant model

̇ = ( )x f x, u

with states ( ) ∈ tx nx and inputs ( ) ∈ tu nu which satisfy standard
properties as described in the following.

Assumption 1. ( )↦ ( )x, u f x, u is continuous in ( )x, u and globally
Lipschitz continuous in x uniformly in u.

Assumption 2. ( )↦ ( )x, u f x, u is differentiable with respect to u for
all ∈ x nx.

Discretization is used for the purpose of digital control, such
that the plant is controlled in a sampled-data fashion at sampling
instants ≔t ihi for ∈ ≥i 0 with sampling period h. The control
command sequence is restricted to a zero-order-hold

( ) = ∀ ∈ [ + ) ∈ ≥t t ih ih h iu u , , , .i 0

The aim is to control the plant by applying a control law κ to
regulate the model to the origin. The control law depends on the
current state ≔ ( )tx xi i and the control design parameters p,

κ= ( )pu x , .i i

Let ≔( … )p pp , , n1 p
contain the design parameters …p p, , n1 p

to be

tuned.
In this paper, the control command is obtained by solving a

finite-horizon, optimal control problem (OCP) at each sampling
instant ti,

( (·) (·))≔ ( )
( )

⁎ ⁎

( )
x u J x u p, argmin , ,

1ax u,

( ) = ( )xs. t. 0 x 1bi

τ τ̇( ) = + ∀ ∈ [ ] ( )x Ax Bu T0, 1c

τ τ τ( ) ∈ [ ] ( ) ∈ [ ] ∀ ∈ [ ) ( )x x x u u u T, , , 0, 1d

τ τ( ) = ( ) ∀ ∈ ∀ ∈ [ + ) ( )≥u u kh k kh kh h, , . 1e0

For succinctness, the dependence of τ τ↦ ( )⁎x and τ τ↦ ( )⁎u on ( )px ,i
is omitted. Consequently,

κ( )≔ ( ) ( )⁎upx , 0 . 2i

The predicted states x used internally in the OCP is distinct to the
actual (measured/observed) variable x, although sized equally
such that ( ) ∈ x t nx and inputs ( ) ∈ u t nu. Further, also note the
distinction between the nonlinear plant model f and prediction
model in linear time-invariant (LTI) form

≔ + ≔ +∂
∂

∂
∂f Ax Bu x uf

x 0,0

f
u 0,0

used internally in the OCP. The two

models have the same equilibrium at the origin, that is
( ) = ( )f 0, 0 f 0, 0 . The optimization is subject to the prediction

model (1c) representing the dynamics of the plant initialized at
(1b), and the plant constraints (1d). The zero-order-hold control
(1e) discretizes the control command over the sampling steps
∈ { … − }k N0, , 1 .
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