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a b s t r a c t

Control of compliant mechanical systems is increasingly being researched for several applications in-
cluding flexible link robots and ultra-precision positioning systems. The control problem in these systems
is challenging, especially with gravity coupling and large deformations, because of inherent under-
actuation and the combination of lumped and distributed parameters of a nonlinear system. In this paper
we consider an ultra-flexible inverted pendulum on a cart and propose a new nonlinear energy shaping
controller to keep the pendulum at the upward position with the cart stopped at a desired location. The
design is based on a model, obtained via the constrained Lagrange formulation, which previously has
been validated experimentally. The controller design consists of a partial feedback linearization step
followed by a standard PID controller acting on two passive outputs. Boundedness of all signals and
(local) asymptotic stability of the desired equilibrium is theoretically established. Simulations and ex-
perimental evidence assess the performance of the proposed controller.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of stabilization of underactuated mechanical
systems, both in the domain of ordinary and partial differential
equations, has been widely addressed by several control re-
searchers in recent years. In the domain of flexible mechanisms
and robots, flexibility in the links is the main source of under-
actuation. If the deformations due to flexibility are small it is
possible to use an unconstrained Lagrange formulation and invoke
the Assumed Modes Method (AMM) (Meirovitch, 1975) to obtain a
simple, finite-dimensional model—see Dwivedy and Eberhard
(2006) for a recent literature review. This modeling procedure,
however, is inapplicable for systems with large deformations, for
which a constrained Euler–Lagrange (EL) formulation is required.
This approach has been adopted in Patil and Gandhi (2014) to
derive an accurate model for a single ultra-flexible link fixed to a
cart. Potential energy change owing to ultra-large deformations in
the presence of gravity is considered in Patil and Gandhi (2014)
using the constant length of the beam as a holonomic constraint.
For a survey on recent control techniques for this class of systems
see Patil and Gandhi (2014), Torfs, Vuerinckx, Swevers, and
Schoukens (1998), and Bayo (1987).

The objective of this paper is to design an energy shaping

controller with guaranteed stability properties for the model of a
single ultra-flexible link fixed to a cart reported in Patil and Gandhi
(2014). As is well known (Ortega, Donaire, & Romero, 2016) the
application of energy shaping controllers is stymied by the need to
solve partial differential equations (PDEs) that identify the me-
chanical structure (Lagrangian or Hamiltonian) that is assigned to
the closed-loop. To propose a truly constructive energy shaping
scheme, that does not require the solution of PDEs, it was recently
proposed in Donaire et al. (2016) to relax the constraint of pre-
servation in closed-loop of the EL structure. The design in Donaire
et al. (2016) proceeds in two steps, first, we apply a partial feed-
back linearization (PFL) (Spong, 1998) that transforms the system
into Spong's normal form—if this system is still EL, two new
passive outputs are immediately identified. Second, a classical PID
around a suitable combination of these passive outputs completes
the design.

It is shown in the paper that this technique, developed for
standard EL systems in Donaire et al., is also applicable to the
constrained EL system at hand. This extension is far from obvious,
because the (lower order) dynamics that results from the projec-
tion of the system on the manifold defined by the constraint is not
an EL system. In spite of this fact it is shown that because of the
workless nature of the forces introduced by the constraints, it is
still possible to identify the two new passive outputs to which the
PID is applied.

The remainder of the paper is organized as follows. Section 2
presents the full constrained EL dynamics of the system and its
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reduced order projection. Section 3 presents the proposed energy
shaping control algorithm. Section 4 presents the simulation re-
sults, while in Section 5 we show the experimental ones. Section 6
summarizes the work and outlines some future research.

Notation: Unless indicated otherwise, all vectors in the paper
are column vectors. Given ∈ n , ∈ ei

n is the ith Euclidean basis
vector of n. For ∈ x n, we denote | | ≔ ⊤x x x2 . To simplify the ex-
pressions, the arguments of all mappings—that are assumed
smooth—will be explicitly written only the first time that the
mapping is defined. For a scalar function → V: n , we define
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2—when clear from the context the sub-

index in ∇ will be omitted.

2. System dynamics and problem formulation

In Patil and Gandhi (2014) a dynamic model that accurately
describes the behavior of the single ultra-flexible link fixed to a
cart depicted in Fig. 1 is reported. The main feature of this model,
which distinguishes it from other models, is that to take into ac-
count large deformations of the link where its length is assumed
constant—giving rise to a holonomic constraint. The model is
rigorously developed using a constrained EL formalism, combined
with a standard application of the AMM, and its validity is ex-
perimentally validated. In this section we present this model, first,
in its constrained EL form and then in a reduced form—obtained
via the elimination of the constrained equations.

2.1. Constrained Euler–Lagrange model

The model reported in Patil and Gandhi (2014) admits a con-
strained EL representation of the form

τ λ

Γ

( ) ¨ + ( )̇ ̇ + ( ) + ̇ = + ( )
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q
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where θ= ( ) ∈ × ×+  q x zcol , ,e are the generalized co-
ordinates, ≥R 0 is a matrix of damping coefficients. >D 0 is the
inertia matrix, ̇Cq are the Coriolis and centrifugal forces, B is a
conservative force vector due to potential energy, τ is the control

vector, λA is a vector of virtual forces due to the holonomic con-
straint, with λ being the Lagrange multiplier, and Γ is the (con-
stant length) constraint function given by

∫Γ θϕ( )≔ + ′( ) − ( )
⎡⎣ ⎤⎦q x x L1 d , 2

x

0

2e

with >L 0 being the length of the link and ϕ being the mode
shape function of the AMM (Meirovitch, 1975) reported in Laura,
Pombo, and Susemihl (1974), that is,
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where η and γ are given in Table 1. The analysis made in Patil and
Gandhi (2014) considers only one mode where the deflection
α θ( )x, is given by

α θ ϕ θ( ) = ( )x x, .

The different terms entering into (1) are defined as
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where V is the potential energy of the system given by

Fig. 1. Single ultra-flexible link with base excitation.

Table 1
System parameters.

Parameter Symbol Value Units

Pendulum cross section area o × −8 10 6 m2

Young's modulus E ×9 1010 N

m2

Gravitational acceleration g 9.81 m

seg2

Moment of inertia I × −1.066 10 13 kg m2

Pendulum length L 0.305 m
Tip mass M × −2.75 10 2 kg

Cart mass Mc 0.1 kg
Function of the system natural frequency η 1.1741 –

Dimensionless constant γ 0.9049 –

Pendulum density ρ 8400 kg

m3

Viscous friction at the pendulum base R1 × −9.86 10 4 kg
seg

Viscous friction between the rail and the cart R3 7.69 kg
seg
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