Accepted Manuscript

Interfacial thermodynamics and kinetics of sorption of diclofenac on prepared high performance flower-like MoS_2

Zhang Yalei, Yin Zengfu, Dai Chaomeng, Zhou Xuefei, Chen Wen

PII:	S0021-9797(16)30505-7
DOI:	http://dx.doi.org/10.1016/j.jcis.2016.07.046
Reference:	YJCIS 21432
To appear in:	Journal of Colloid and Interface Science
Received Date:	24 April 2016
Revised Date:	5 July 2016
Accepted Date:	19 July 2016

Please cite this article as: Z. Yalei, Y. Zengfu, D. Chaomeng, Z. Xuefei, C. Wen, Interfacial thermodynamics and kinetics of sorption of diclofenac on prepared high performance flower-like MoS₂, *Journal of Colloid and Interface Science* (2016), doi: http://dx.doi.org/10.1016/j.jcis.2016.07.046

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Interfacial thermodynamics and kinetics of sorption of diclofenac on prepared high performance flower-like MoS₂

Zhang Yalei¹, Yin Zengfu¹, Dai Chaomeng^{*2}, Zhou Xuefei¹, Chen Wen¹

1 State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai

200092, China; ²College of Civil Engineering, Tongji University, Shanghai 200092, China

ABSTRACT

Flower-like MoS₂ with numerous wrinkled nanosheets was prepared via a facile hydrothermal method. The surface morphology and microstructure of the obtained materials were characterized using X-ray diffraction data (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Additionally, the compositions of the flower-like MoS₂ were further revealed by an energy dispersion spectrometer (EDX) and X-ray photoelectron spectrometry (XPS). The obtained MoS_2 was used as an adsorbent to remove diclofenac (DCF, $C_{14}H_{10}Cl_2NO_2Na$) from aqueous solutions and presented excellent performance for removing DCF. The sorption kinetics, isotherms and effect of solution pH on the sorption were evaluated in batch sorption experiments. The sorption characteristics of the interactions between DCF and MoS₂ in water were analyzed using a pseudo-second-order model, an intraparticle diffusion model and Boyd model to determine the sorption rate-determining steps. It was concluded that the sorption of DCF on MoS₂ was fitted better by the pseudo-second-order model and that external diffusion governed the sorption process of DCF onto the MoS₂. The interfacial interaction free energies between DCF and MoS_2 in the sorption process can be calculated based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO). The flower-like MoS2 presenting excellent performance for removing DCF, could be a better choice of treating DCF-containning wastewaters.

Keywords: MoS₂; Diclofenac; Sorption; kinetics

Download English Version:

https://daneshyari.com/en/article/6993738

Download Persian Version:

https://daneshyari.com/article/6993738

Daneshyari.com