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a b s t r a c t

In online automotive applications, look-up tables are often used to model nonlinearities in component
models that are to be valid over large operating ranges. If the component characteristics change with
ageing or wear, these look-up tables must be updated online. Here, a method is presented where a
Kalman filter is used to update the entire look-up table based on local estimation at the current operating
conditions. The method is based on the idea that the parameter changes observed as a component ages
are caused by physical phenomena having effect over a larger part of the operating range that may have
been excited. This means that ageing patterns at different operating points are correlated, and these
correlations are used to drive a randomwalk process that models the parameter changes. To demonstrate
properties of the method, it is applied to estimate the ohmic resistance of a lithium–ion battery. In
simulations the complete look-up table is successfully updated without problems of drift, even in parts of
the operating range that are almost never excited. The method is also robust to uncertainties, both in the
ageing model and in initial parameter estimates.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The characteristics of many physical systems vary with both
operating conditions and age. These variations typically occur on
very different time-scales and can thus be treated separately in
parameter estimators. Parameter variations due to operating
conditions are often modelled explicitly, e.g. using look-up tables,
while ageing is typically handled by robust design or by an
adaptive scheme acting on a slower time scale.

An example of such a system is automotive lithium–ion bat-
teries, where the ohmic resistance changes considerably both with
temperature, State-of-Charge, and age (Broussely et al., 2005; Re-
mmlinger, Buchholz, Meiler, Bernreuter, & Dietmayer, 2011; Vetter
et al., 2005). Variations with age are much slower than changes
with operating conditions (Jossen, 2006), which motivates hand-
ling these two types of variations separately. In the literature,
there are several articles focusing on building models valid over
the operating range, using look-up tables (Debert, Colin, Bloch, &
Chamaillard, 2013; Do, Forgez, el Kadri Benkara, & Friedrich, 2009;
Hu, Yurkovich, Guezennec, & Yurkovich, 2009; Jaguemont, Boulon,
& Dubé, 2015) and elementary functions (Chen & Rincón-Mora,

2006; Hu, Li, Peng, & Sun, 2012; Lam, 2011; Zou, Hu, Ma, & Li,
2015). To handle variations due to ageing, recursive algorithms
such as recursive least squares (RLS) (Hu, Sun, Zou, & Peng, 2011;
Zou et al., 2015) or Kalman filters (Do et al., 2009; Plett, 2004) are
commonly used for online estimation of parameters at the current
operating conditions.

Within the battery community, there appears to be no pub-
lished methods for updating look-up tables. Some previous work
on updating look-up tables can, however, be found in other fields
using Kalman filters (Höckerdal, Frisk, & Eriksson, 2011; Guardiola,
Pla, Blanco-Rodriguez, & Cabrera, 2013) and recursive least squares
(Peyton Jones & Muske, 2009), though the focus is then on an
update of the look-up table only at the operating points closest to
the current operating conditions. This means that the parameter
estimate in operating points that have not been visited for a long
time may be far from the true value. For vehicle batteries, this can
cause a problem, for instance when cold cranking in operating
conditions that have not been updated for a long time (Anderson &
Moore, 1979).

In this work, we present a novel method for updating an entire
look-up table based on information only at the current operating
conditions. This is made possible by modelling correlations be-
tween changes in parameter values at different operating points
over ageing and include them in a Kalman filter that handles the
update of the look-up table.
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This paper is structured such that Section 2 introduces some
notation used in the paper. Section 3 presents look-up tables and
Section 4 the ageing model. In Section 5, the proposed algorithm is
presented and in Section 6, it is tested in a simulation study.
Eventually, Section 7 summarises the results.

2. Notation

Some terms used in the paper have specific meaning that are
important to keep in mind and are therefore listed in Table 1 with
a short description. Some other important non-standard notations
are listed in Table 2. Note that subscripts k always is a time index,
i.e. Θ Θ= ( )kk , while indices i and j always refers to an element of
the vector containing the operating points. More standardised
notation are described when introduced.

3. Look-up tables

In Fig. 1, a one-dimensional look-up table is depicted. Denote
by xi, = …i n1, , , the operating points defining the look-up table
break-points. Let Θ ∈ n be the corresponding vector of look-up
table values, and define the time varying index, i(k), as:

( ) = { = … ≤ ( )}i k j n x x kmax 1, , ,j

where x(k) is the current operating condition, which in general is
between the break-points of the look-up table. Define the scalar
value η ∈ [ ]0, 1 as:

η ( ) =
( ) −

( ) −
≤ ( ) ≤( )

( )+ ( )
k

x k x
x k x

x x k x, ,i k

i k i k
n

1
1

where η is limited to be 0 if ( ) <x k x1 and 1 if ( ) >x k xn. With linear
interpolation, the current parameter value is given by (cf. Fig. 1):

θ η θ η θ( ) = ( − ( )) ( ) + ( ) ( )( ) ( )+k k k k k1 .x
i k i k 1

In the following, the vector = [ ( ) … ( )]C c k c k, ,k n1 will be defined by
the elements:

⎧
⎨⎪
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0, otherwise
j

which means that the look-up table output can be written in
matrix notation as:

θ Θ( ) = ( ) ( )k C k . 1x
k

4. Ageing model

The ageing model proposed here builds on the idea that the
changes observed due to ageing has an underlying physical cause
and will thus affect the parameter values at all operating points.

This leads to a long-term trend in the changes that can be utilised
to improve estimation at parts of the look-up table where data
have not been collected for a long time. In Swierczynski (2012),
several reasons for an increase in battery impedance as the battery
ages are presented, such as conductor corrosion and loss of active
electrode surface. It is reasonable to assume that these effects are
visible across the entire operating range. Such a correlation is also
observed in the data presented in Waag, Käbitz, and Sauer (2013),
where data from three different cells at two stages of ageing are
shown for five different temperatures and two SoC levels. The data
are reproduced in Fig. 2, where cell A is new, cell B was aged 200
cycles and cell C was aged 1900 cycles.

In Fig. 2, the resistance for all three batteries at two different
operating points, − °10 C and °25 C, are shown in an x–y plot. It
indicates strong correlation between changes in parameter values
at different operating points over ageing, where an increase in
resistance at one temperature correlates well with an increase at
other temperatures.

Table 1
Abbreviations and nomenclature.

BoL Beginning-of-Life, i.e. a new battery where SoH¼100%
EoL End-of-Life, i.e. when a battery is considered useless for the application, SoH¼0%
MoL Middle-of-Life, not always well defined in literature, but here we mean SoH around 50%
Operating condition Currently active conditions. In this document, the operating condition is always temperature
Operating points Discretisation of the operating range into a vector
Operating range The expected range that must be handled by the model, e.g. highest to lowest temperature
SoC State-of-Charge
SoH State-of-Health, in this work only defined by number of charge/discharge cycles the battery has been exposed to
Spilling effect Refers to when information from one operating condition is used to update operating points related to other operating conditions

Table 2
Notation.

Θ Look-up table parameter vector with elements corresponding to the
operating points. Note that it is always the same physical parameter,
e.g. ohmic resistance, but at different operating points, e.g. different
temperatures

θi Parameter value at operating point i
Θk Parameter vector at current time step, i.e. short notation for Θ ( )k
θx Parameter value at current operating condition
x Operating condition
xi Operating point i
i, j Index of operating point
k Time index in discrete time
η Interpolation variable
w, v, e Realisations of Gaussian random variables
Σ Covariance matrix used to model ageing
μi Expected value for parameter θi
si Standard deviation for parameter θi
ρi j, Correlation coefficient between parameter θi and θj

Fig. 1. Example of 1-D look-up table. Here η = 0.6.
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