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An approach to minimize tuning effort of nominal Model Predictive Control algorithms is proposed. The
algorithm dynamically calculates output set points to accommodate user-defined output importance,
which is more intuitive than selecting values for the MPC weighing matrices. Instead of tuning the
weights on the outputs deviations from their set points, weights on the input values and input incre-
ments, which are the usual tuning parameters of MPC, the desired output control performance of the
MPC can be specified by performance factors. The proposed method extends the existing methods that
consider a reference trajectory for the output tracking to the case of zone control and input targets. The
proposed method also assumes that, as in most commercial MPC packages, the controller has two layers:
a static layer and an extended dynamic layer. The method is illustrated by three case studies, con-
templating both SISO and MIMO systems. It is observed that: the output set point tracking performance
can be changed without modifying the MPC tuning weights, the approach is capable of achieving similar
performance to conventional MPC tuned by multiobjective optimization techniques from the literature,
with a fraction of computer effort, and it can be integrated with Real Time Optimization algorithms to

control complex systems, always respecting output constraints.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Model Predictive Control (MPC) is a well-established process
control strategy both in industry and academia. The main idea is to
predict the future values of the system outputs based on a system
model and minimizing the error between the predictions and re-
ference values, or set points, over a prediction horizon. The control
problem is posed in terms of a constrained optimization problem,
in which optimum control actions are calculated minimizing the
aforementioned goal, subject to constraints on the inputs and
outputs and control action values. Extensive reviews of MPC al-
gorithms and applications were addressed in the literature (Garcia,
Prett, & Morari, 1989; Morari & Lee, 1999; Qin & Badgwell, 2003).

In the usual formulation, the cost function with input targets
and output control zones is given in (1). The first term takes into
account the sum of square errors along the prediction horizon
between the predicted system output and the output set point,
which is a decision variable of the control problem in the control
zone strategy. The second and third terms penalize the total
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control moves and the deviation between the inputs and input
targets over the control horizon, respectively
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where Q, € "™, Q, € RV, R e RM*M are positive definite
weighting matrices, p is the prediction horizon, m is the control
horizon, ug.; is the vector of input targets, y (k + j/k) is the output
prediction at time instant k+j, J,, is the output set point,
Au(k + j/k) is the vector of input increments at time instant k-+j,
Auk + jlk) = uk + jlk) — uk + j — 11k), and u(k + j/k) is the input
value at time instant k+j, nu is the number of inputs and ny is the
number of outputs of the system. The control problem with the
objective defined in (1) is subject to constraints on Au(k), u(k) and
y(k) that represent physical constraints on control actions, input
and output values, respectively
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ymin < ysp,k < ymux (4)

The decision variables of the optimization problem defined
through (1)-(4) are the control sequence
Aw = [Au(klk)" Auk + 1k - Auk +m - 1k 1" and y,, is a
variable set point that must lie inside the control zone as defined
in (4).

The set of parameters defined by Q,, R, m and p are the usual
tuning parameters that affect closed-loop MPC performance

Choosing the tuning parameters appropriately is not trivial and
many strategies to obtain the optimal set of parameters have been
developed in the literature. Garriga and Soroush (2010) reviewed
the available tuning methods. Tuning strategies for p, m, Q,, R, as
well as the parameters related to a state observer (the covariance
matrix and the Kalman filter gain) were compared. Reliable
guidelines for m and p were established, however selection of Q,,
and R is still open for discussions. For example, Shridhar and
Cooper (1997, 1998) derived an analytical expression for R, by
approximating the system model by first-order-plus-dead-time
transfer functions and setting the conditioning number of the
hessian matrix of the control problem, posed as a quadratic pro-
gramming problem, to 500. This value indicates an acceptable
tradeoff between performance and robustness, but the tuning
method cannot contemplate output tracking performance goals
directly.

A multiobjective tuning technique was proposed in Exadaktylos
and Taylor (2010). The tuning goals are defined as the minimiza-
tion of the integral of the absolute errors between the closed-loop
system output responses and first-order-plus-dead-time reference
trajectories. In their approach, two optimization problems are
solved simultaneously: one master problem that optimizes the
tuning parameters Q, and R and a secondary problem that in-
ternally solves the MPC problem, to calculate the closed-loop re-
sponses. The technique is computationally expensive, even though
it was designed for offline MPC tuning. Another multiobjective
technique designed for robust tuning was introduced by Junior,
Martins, and Kalid (2014). The tuning goals contemplate both the
output deviations from their set points and the summation of the
control effort over a simulation horizon. Assuming an additive
uncertainty scenario, tuning is performed for the worst-case
model, which is chosen based on the system transfer function
matrix condition number and the Morari Resilience Index (Morari,
1982). The approach contemplates Q,, R, p and m since the opti-
mization problem is posed as a mixed-integer nonlinear problem.

Some effort has been directed to force the predictive controllers
to follow reference output trajectories, instead of set points. In
Charest and Dubay (2014), the authors employ continuous linear
trajectories multiplied by a correcting factor that eliminates
tracking offset. The performance superiority over Generalized
Predictive Control and Dynamic Matrix Control is demonstrated
through simulation and experimental results, however the tech-
nique is still dependent on the tuning of both the correcting factor
and parameters Q, and R. Piecewise continuous reference trajec-
tories were utilized in Ren and Beard (2004) to derive controllers
based on Lyapunov functions for time-varying input constraints.

In the control of batch processes, besides the issue of following
set point trajectories, measurements regarding product quality are
usually not immediately available, and models based on previous
batch data are utilized to establish relationships between readily
available measurements and manipulated variables and batch
quality variables. Golshan, MacGregor, Bruwer, and Mhaskar
(2010) proposed a system model based on Principal Component
Analysis whereas Wan, Marjanovic, and Lennox (2012) utilized a
projection to latent structures model to predict the behavior of
critical variables. In batch processes, it is important to forecast the
batch product quality and be able to make corrections through

variable manipulation if the predicted result is not sufficiently
close to the expected result. Thus, trajectory tracking predictive
controllers play an important role in batch processes. However, the
control strategy is still dependent on the appropriate selection of
tuning parameters. Regarding the control of batch processes, it has
been reported in the literature a different approach to achieve a
specified product quality by means of a data-driven predictive
control framework (Aumi, Corbett, & Mhaskar, 2012; Corbett,
Macdonald, & Mhaskar, 2013). Non-linear models derived from
detailed first-principle models predict the batch reactor behavior
more accurately than the linear models in MPC, yielding sig-
nificant less error in the number average and molecular weight
average of key components (Corbett et al., 2013).

Trajectory tracking is also an important topic in the robot
control area. Klan¢ar and Skrjanc (2007) defined the reference
trajectory as a smooth twice-differentiable function of time with
known dynamics. Experimental results showed that on one hand,
the proposed approach is more flexible than the conventional
state-tracking controller, thus allowing better control but on the
other hand, its performance is dependent on the tuning variables.
Farrokhsiar, Pavlik, and Najjaran (2013) developed a dual control
strategy in which the optimum control moves are calculated by a
MPC and an ancillary control with inner feedback robustifies the
desired trajectory to account for uncertainty. The control perfor-
mance is still prone to parameter tuning.

In this paper, an extension of a state-space model based MPC
(Santoro & Odloak, 2012) is proposed, in which closed-loop per-
formance is defined in terms of the desired behavior of system
outputs instead of the selection of Q, and R. The latter are only
necessary for numeric conditioning of the control problem, posed
as a constrained optimization problem as in the conventional MPC
literature. The main contribution of this work is to extend the
existing methods that consider a reference trajectory for the out-
put tracking (Richalet, Rault, Testud, & Papon, 1978; Rossiter &
Kouvaritakis, 1998) to the case of zone control and input targets.
The approach assumes that, as in most commercial MPC packages,
the control function is displaced in two layers, a static layer that
optimizes the predicted steady-state and a dynamic layer that
incorporates the concept of zone control and input targets. The
approach also provides a MPC embedded with straightforward
tuning guidelines, in which the behavior of its closed-loop per-
formance is determined by a performance factor, independent of Q
y and R. Wallace, Pon Kumar, and Mhaskar (2016) propose a MPC
tuning strategy, based on a two-tier control structure in which the
first tier calculates the best achievable performance subject to
input constraints and the second tier implements the control ac-
tions related to the previously obtained performance. However,
their method was not devised for MPC with zone control.

The paper is structured as follows: Section 2 describes the finite
horizon MPC with output zone control and input targets for-
mulation, based on an incremental state-space model. Section 3
presents case studies to demonstrate the efficiency of the pro-
posed approach, and how it makes MPC tuning easier and more
straightforward. The third case study illustrates the integration of
a MPC with the proposed tuning approach and the Real Time
Optimization through the inclusion of the static layer that, at each
sampling time, calculates input targets that are as close as possible
to the original input targets produced by the RTO layer but re-
specting the input and output constraints at the current operating
point of the system (Marlin & Hrymak, 1997). Finally, some con-
clusions are drawn in Section 4.

2. Finite horizon reference tracking MPC

It is assumed that the system with ny outputs and nu inputs can
be represented by a linear state-space model as in (5)
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