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a b s t r a c t

A bilateral teleoperation system comprises a human operator, a teleoperator, and an environment.
Without exact models for the teleoperator's terminations (i.e., human operator and the environment), it
is typically assumed that they are passive but otherwise arbitrary. Based on this assumption, the stability
of the teleoperation system is investigated through Llewellyn's absolute stability criterion for the
teleoperator. However, the assumption of passivity of the terminations is less than accurate and may be
violated in practice. Using Mobius transformations, this paper develops a new powerful stability analysis
tool for a two-port network coupled to a passive termination and another termination that is (a) input
strictly passive (ISP), (b) output strictly passive (OSP), (c) input non-passive (INP), or (b) disc-like non-
passive (DNP). While this new stability criterion is applicable to any two-port network, we apply it to
bilateral teleoperation systems with position-error-based (PEB) and direct-force-reflection (DFR) con-
trollers. Simulations and experiments are reported for a pair of Phantom haptic robots.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Stability analysis of a bilateral teleoperation system is challen-
ging due to two typically unknown elements in its two ends: the
human operator and the environment (Hannaford & Wood, 1989;
Hokayem & Spong, 2006; Yan & Salcudean, 1996). For analysis of
stability, a teleoperation system is typically modeled as a two-port
network teleoperator connected to the two one-port network
terminations (Fig. 1a), where the teleoperator comprises the
master, the slave, their controllers, and the communication chan-
nel and the terminations are the human operator and the
environment. By definition, absolute stability of a two-port net-
work will guarantee the stability of the coupled system resulting
from connecting the two-port network to two passive but other-
wise arbitrary one-port network terminations. Equivalently, two-
port network absolute stability requires that the driving-point

impedance seen at one of the ports is passive when the other port
is terminated to a passive one-port network (Fig. 1b) (Haykin,
1970). Therefore, the notion of absolute stability has been applied
to the stability analysis of coupled two-port networks with limited
information about the terminations.

1.1. Llewellyn's absolute stability criterion

For stability analysis of a bilateral teleoperation system, some-
times the passivity of the teleoperator is investigated (Anderson &
Spong, 1989; Lee & Spong, 2006; Niemeyer & Slotine, 2004; Nuno,
Basanez, & Ortega, 2011), which is sufficient for its absolute
stability (Haykin, 1970). The teleoperator's absolute stability is a
less conservative condition compared to its passivity. Due to
stability-transparency trade-offs in a bilateral teleoperation sys-
tem, minimizing conservatism in stability analysis is important
(Kim, Chang, & Park, 2013; Lawrence, 1993; Li, Tavakoli, Mendez, &
Huang, 2013).

A well-known absolute stability criterion for two-port networks
was proposed by Llewellyn (1952) and applied to bilateral teleopera-
tors (Adams & Hannaford, 1999; Aziminejad, Tavakoli, Patel, &
Moallem, 2008; Hashtrudi-Zaad & Salcudean, 2001). Llewellyn's
absolute stability criterion gives closed-form conditions involving
the immittance (impedance, admittance, hybrid, and transmission,
Aliaga, Rubio, & Sanchez, 2004) parameters of a two-port network
for it to be absolutely stable (Haykin, 1970; Ku, 1963).
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1.2. Assumption on termination passivity

Llewellyn's absolute stability criterion requires both the termi-
nations of the two-port network to be passive. Passivity of a linear
time-invariant (LTI) system is equivalent to the positive-realness of
its input–output relationship in the frequency domain (transfer
function or impedance in the context of this paper) (Marquez,
2003). Equivalently, a passive LTI system has an impedance with
its Nyquist diagram entirely in the right half of the complex
plane (RHP).

Expecting the passivity of both the terminations of a teleopera-
tion system can be unrealistic and overly restrictive in some
applications. A two-port network's termination may simply be
non-passive (Hirche, Matiakis, & Buss, 2009; Matiakis, Hirche, &
Buss, 2009). On the other hand, a termination can be strictly
passive. Later in the paper, we will discuss specific examples of
such terminations for bilateral teleoperation systems. In this paper,
a powerful tool is developed for stability analysis of a two-port
network coupled to a passive termination and a non-passive or
strictly passive termination with certain constraints on the termi-
nation's impedance.

Interestingly, to have a stable coupled system, it suffices if, after
terminating the two-port network to a one-port network that is
not necessarily passive, the driving-point impedance seen at the
remaining (i.e., open) port is passive. This is because connecting a
passive termination at the currently open port of this two-port
network will inevitably result in a passive and thus stable system
even though the opposite port might have been connected to a

non-passive termination. As we will see later, this can be
explained by the concepts of excess of passivity (EOP) and short-
age of passivity (SOP) for feedback-interconnected systems. Briefly,
when two systems are connected in a negative feedback loop, the
stability of the interconnected system is guaranteed if both
systems are passive. If one of the system has EOP, the other system
may have SOP without risking the instability of the interconnected
system (Sepulchre, Jankovic, & Kokotovic, 2012).

1.3. Leveraging termination knowledge in stability analysis

Utilizing knowledge about a termination in the analysis of
stability of a coupled two-port network has been increasingly
investigated by researchers. For instance, knowing a lower or upper
bound on the impedance of a termination helps to model the
termination as an arbitrary impedance coupled to a series or shunt
impedance, respectively (Adams & Hannaford, 2002; Hashtrudi-Zaad
& Salcudean, 2001). In another work, notion of bounded impedance
absolute stability (BIAS) is applied to a teleoperation system in the
scattering domain and the resulted stability conditions are expressed
as bounds on the reflection coefficients (Haddadi & Hashtrudi-Zaad,
2012). The teleoperation system can be modeled in the integral
quadratic constraints (IQC) formulation to reestablish stability con-
ditions with known bounds on the termination (Polat & Scherer,
2012).

Also, recent work shows that conventional absolute stability
criteria can be extended to strictly passive (Jazayeri & Tavakoli,
2012b) and non-passive terminations (Jazayeri, Dyck, & Tavakoli,
2013).

In recent works, stability analysis of two-port network systems
has been studied when the terminations are either ISP or INP. In
Jazayeri and Tavakoli (2012b) two approaches are applied to
extend Llewellyn's absolute stability. In the first approach, the
driving point impedance at port 1 is assumed to be in the RHP and
the admissible Nyquist region for termination 2 is found. In the
second approach, port 2 is assumed to be a right- or left-shifted
RHP and the resulting driving-point impedance at port 1 becomes
a disc, which should be entirely in the RHP for stability of the
coupled two-port network. In Jazayeri et al. (2013), the second
approach is applied when the terminations are non-passive
rectangular impedance or right-shifted RHP impedances. In both
the above work, the stability analysis is applied to a PEB-controlled
bilateral teleoperation systems. This paper leverages the second
approach when the terminations are INP/ISP/ONP/DSP/OSP and
applies the results to PEB- and DFR-controlled bilateral teleopera-
tion systems. In addition, this paper verifies the resulting stability

Nomenclature

fm control signal for the master
fs control signal for the slave
fh operator's force
fe environment's force
xm master position
xs slave position
Cm(s) position controller for master
Cs(s) position controller for slave
kpm ; kvm proportional and derivative gains of Cm
kps ; kvs proportional and derivative gains of Cs
Zm impedance of the master
Zs impedance of the slave
μ position scaling factor
λ force scaling factor

α ratio CmðsÞ=CsðsÞ
β initial energy of a passive system
δ EOP of an ISP system
ϵ EOP of an OSP system
η SOP of an INP system
υ SOP of an ONP system
ρ SOP of a DNP system
Zij the i-th row and j-th column element of an

impedance matrix
Rij real part of Zij
Iij imaginary part of Zij
z2 impedance coupled to port 2 of a two-port network
Za1 driving-point impedance at port 1 of a two-port

network
A;B;C parameters of a generalized circle in the

complex plane
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Fig. 1. (a) A two-port network connected to two one-port network terminations,
and (b) the driving-point impedance at port 1, Za1 ¼ V1=I1, when port 2 is
terminated to a passive impedance z2.
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