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a b s t r a c t

Lithium-ion (Li-ion) battery state of charge (SOC) estimation is important for electric vehicles (EVs). The
model-based state estimation method using the Kalman filter (KF) variants is studied and improved in
this paper. To establish an accurate discrete model for Li-ion battery, the extreme learning machine (ELM)
algorithm is proposed to train the model using experimental data. The estimation of SOC is then
compared using four algorithms: extended Kalman filter (EKF), unscented Kalman filter (UKF), adaptive
extended Kalman filter (AEKF) and adaptive unscented Kalman filter (AUKF). The comparison of the
experimental results shows that AEKF and AUKF have better convergence rate, and AUKF has the best
accuracy. The comparison from the radial basis function neural network (RBF NN) model also verifies that
the ELM model has lighter computation load and smaller estimation error in SOC estimation process. In
general, the performance of Li-ion battery SOC estimation is improved by the AUKF algorithm applied on
the ELM model.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Electric vehicles (EVs) have the advantages of no pollution, high
efficiency and comfortable driving environment compared with
traditional fossil-fuel vehicles (Ehsani, Gao, & Emadi, 2009).
Lithium-ion (Li-ion) batteries are commonly used as the power
source for EVs since a Li-ion battery has high efficiency, high
charging and discharging rate, low self-discharge, and no memory
effect (Faa-Jeng, Ming-Shi, Po-Yi, Han-Chang, & Chi-Hsuan, 2012;
Chaturvedi, Klein, Christensen, Ahmed, & AKojic, 2010). However
to increase battery life and to ensure safe operation (Jossen, Späth,
Döring, & Garche, 1999), a battery management system (BMS) is
required to supervise the battery0s status and control the battery0s
energy flow.

State of charge (SOC) is an important variable describing the
status of a Li-ion battery. SOC is defined as the ratio of the battery0s
remaining capacity to the nominal capacity (Plett, 2004a). Since
over-charging and over-discharging bring inevitable damage to a
Li-ion battery, accurate SOC estimation should be provided by the
BMS (Plett, 2004b). Piller, Perrin, and Jossen (2001) summarizes
different SOC estimation methods.

The most widely used technique for SOC estimation is Coulomb
counting (Lee, Nam, & Cho, 2007). The principle of Coulomb

counting is to take the battery as a capacitor and obtain its storage
energy by current integration. Nevertheless, estimation error may
be accumulated for this open-loop algorithm, resulting in the
estimate drifting away from the true value. Any initial SOC error
also causes a bias in the estimation. Another commonly used
technique is the open-circuit-voltage (OCV) method. This method
obtains SOC from the battery0s OCV-SOC relationship (Coleman,
Chi Kwan, Chunbo, & Hurley, 2007). However, accurate OCV
measurement requires the battery to be in equilibrium state, while
the batteries in EVs are at work during driving. Therefore, the OCV
method is not suitable for real-time SOC estimation (Piller et al.,
2001).

The impedance spectroscopy technique measures the battery0s
impedance by testing the voltage response with a small AC current
applied to the battery (Ehsani et al. 2009). A spectroscopy is
composed of the impedance data extracted from different fre-
quency currents. In (Zenati, Desprez, & Razik, 2010), the intelligent
method of fuzzy logic is combined with impedance spectroscopy
to achieve better SOC estimation result. This method provides
accurate SOC, but it needs specific experiments (Plett, 2004a) so it
is not suitable for applications in EVs.

Kalman filter (KF) is a mathematical technique that provides an
efficient recursive means for estimating the states of a process by
minimizing the mean of the squared error (Simon, 2006; Lerro &
Bar-Shalom, 1993). Li-ion battery SOC has a nonlinear relationship
with other variables (He, Xiong, & Guo, 2012). Therefore, the
nonlinear version of KF, extended Kalman filter (EKF), is widely
applied to estimate SOC online (Barbarisi, Vasca, & Glielmo, 2006).
The essence of EKF is to linearize the system at each time step to
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approximate the nonlinear system with a linear time varying
system. In Plett (2004c), Zhiwei, Mingyu, and Jie (2009), Hu,
Youn, and Chung (2012) and Chen et al. (2013), EKF is utilized to
do Li-ion battery SOC estimation. However, EKF is only applicable
when the model is accurate or has a suitable form. For nonlinear
models, the unscented Kalman filter (UKF) is suitable to do state
estimation. UKF does not linearize the system and the estimation
accuracy can be improved (Simon, 2006). Based on EKF and UKF,
adaptive Kalman filters have been developed to achieve much
better estimation performance for nonlinear systems by adjusting
the noise covariance matrices during estimation (Mohamed &
Schwarz, 1999).

In BMS, the techniques to supervise Li-ion batteries are mostly
based on existing battery models. The issue of obtaining accurate
battery SOC can be divided into battery modeling and state
estimation. Battery modeling is used to establish the model
describing the battery characteristic accurately. Various models
for Li-ion battery have been proposed. There are mainly three
kinds of models: the equivalent circuit model, the electrochemical
model and the neural network (NN) model.

In He, Xiong, and Fan (2011), several kinds of Li-ion battery
equivalent circuit models are analyzed. The equivalent circuit
model represents the battery dynamic characteristics by establish-
ing a circuit composed of voltage source, resistors and capacitors.
This kind of model is easy to comprehend. However, in practice, the
circuit parameters are a non-linear function of SOC. Therefore, they
need to be calculated at several SOC points (Lee, Kim, Lee, &Cho,
2008; Hu, Sun, & Zou, 2010). In Chen and Rincon-Mora (2006), the
parameters are functions of SOC determined by curve fitting, which
results in model with complex form and strong nonlinearity. In
addition, since the SOC cannot be measured directly, inaccurately
estimated SOC causes the model to be inaccurate.

The electrochemical model (Smith, Rahn, & Wang, 2010)
focuses on the battery0s inner chemical reaction and predicts the
spatially distributed behavior of the essential states of the battery
(Chaturvedi et al., 2010). This kind of model is the most accurate
for Li-ion batteries. However, the electrochemical model is
described by partial differential equations, making the state
estimation process difficult.

Recently, modeling batteries by neural networks (NNs) has also
been widely applied. NNs can approximate nonlinear mappings
directly from existing input–output samples. The NN battery model
provides a black-box model with no need to know the battery0s inner
structure and reaction. The application of NNs brings significance
convenience to the modeling process. There is no need to calculate
the model parameters separately at different SOC points. The error
caused by curve fitting for each parameter is also avoided. In Du, Liu,
Chen, and Wang (2012) and Liu, Wang, Du, and Chen (2012), the NN
model for Li-ion battery is established with high accuracy in
simulation. The established model describes the relationship
between SOC and its influential factors with mathematical equations.
In this paper, the NN model for Li-ion battery is established.

Although NNs are suitable for Li-ion battery modeling, tradi-
tional NNs have the flaws of heavy computation and long training
time. The model parameters need to be tuned iteratively during
training. The iteration steps need large amounts of computation
and make the mapping learning process inefficient (Huang, Zhu, &
Siew, 2006; Liang, Huang, Saratchandran, & Sundararajan, 2006).
On the other hand, to represent Li-ion battery0s dynamic char-
acteristics entirely and achieve the desired model accuracy, the
training data sampling time must be short enough. Thus, the
amount of training data may be large. Hence, a faster mapping
learning algorithm is needed.

In this paper, the extreme learning machine (ELM) algorithm,
introduced in (Huang, Zhu, & Siew, 2006), is applied to establish
the Li-ion battery model. For ELM, there is no need to tune the

model parameters during training. The input weights connecting
the input neurons and hidden neurons and the hidden layer biases
are chosen randomly (Huang, Zhu, & Siew, 2006; Liang et al., 2006;
Huang, Chen, & Siew, 2006; Huang, 2003; Huang, Zhu, Mao, Siew,
Saratchandran, & Sundararajan, 2006). The output weights con-
necting the hidden neurons and output neurons are determined
analytically. ELM trains data fast and provides smaller training
error with smaller norm of weights (Huang, Zhu, & Siew, 2006).

The application of ELM makes the modeling process simpler and
provides a more accurate representation of the battery model0s
input–output relationship. In this paper, a discrete Li-ion battery
model is trained by ELM using the sampled data from experiments.
Compared with radial basis function (RBF) NN, the ELM algorithm
has simpler modeling process and higher training accuracy, and
spends much less time on training. Then, the estimation algorithms
of EKF, UKF, adaptive EKF (AEKF) and adaptive UKF (AUKF) are
applied to estimate the battery SOC during the whole discharging
period. Experimental results show that the SOC estimated by AUKF
with the ELM model improves the estimation performance.

The paper is organized as follows. Section 2 describes the
battery model trained by the ELM algorithm. A comparison with
RBF NN is also shown in this section. In Section 3, the algorithms of
EKF, UKF, AEKF and AUKF are described and applied to estimate
SOC. The comparisons of the SOC estimation results with the
above algorithms and the two established NN models are analyzed
in Section 4. Finally, the conclusions are given in Section 5.

2. Li-ion battery modeling

In this section, a discrete model for Li-ion battery cell is
established.

2.1. The proposed model

Firstly, the proposed model0s inputs and output are
determined.

According to the NN theory, the SOC sampled at step k, SOC(k),
is taken as the model input since it represents the battery0s
present status. SOC has a nonlinear relationship with its influential
factors, including battery voltage and current. The proposed model
should be able to describe this relationship accurately. As the
directly measured variable, the current I(k) is taken as an input,
and the battery terminal voltage V(k) is defined as the output.
Moreover, the terminal voltage at sampling step k�1, V(k�1), is
also chosen as the third input for the proposed model. V(k�1)
represents the battery0s status at last step and implies the previous
working status. The theoretical ground for the selection of V(k�1)
is the form of the equivalent circuit model (Schweighofer, Raab, &
Brasseur, 2003) for Li-ion battery. The terminal voltage at step k is
expressed as

VðkÞ ¼ OCVðSOCðkÞÞþRsIðkÞþURC ðkÞ ð1Þ
where Rs represents the battery internal resistance, URC(k) repre-
sents the RC circuit voltage relating to URC(k�1) via a first order
differential equation. To make the model inputs directly measured
variables, URC(k�1) is considered being included in V(k�1).
Hence, V(k�1) has a direct relationship with V(k). A function is
obtained by synthesizing the unknown parameters

VðkÞ ¼ f ðVðk�1Þ; IðkÞ; SOCðkÞÞ; ð2Þ
which is to be approximated by learning algorithms.

The input vector and output for the proposed battery model are
represented by pðkÞ ¼ ½Vðk�1Þ IðkÞ SOCðkÞ �T and V(k). The pro-
posed model0s mathematical equation is expressed by

FðpðkÞÞ ¼ V ðkÞ ð3Þ
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