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a b s t r a c t

This paper proposes a learning automata-based mechanism for blood glucose regulation in type 2 diabetics.
The proposed mechanism takes into account the past history of the blood glucose level to determine the
correct dosage of the insulin. This method uses the learning automata theory to predict the required
dosage of insulin and records the patient history in parameters of a Gaussian probability distribution
function. The parameters of the distribution function are updated based on the difference between the
actual glucose level regulated by the learning automata and the normal range in such a way that the gap
between the actual glucose level and the normal one is minimized. As the proposed algorithm proceeds,
it can be seen that it converges to the optimal insulin dosage that keeps the glucose level in normal range
for a long time. Convergence of the proposed algorithm to the optimal insulin dosage is theoretically
proven. A clinical study is conducted to show the performance of the proposed insulin therapy system for
regulation of the blood glucose level of type 2 diabetics.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The cells of the Pancreas (islets of Langerhans) are responsible
for monitoring and regulating the blood glucose level. The normal
blood glucose level in the human body varies in a narrow range for
example between 70 and 110 mg/dl (milligrams per deciliter) or
4.0 and 6.30 mmol/l (millimoles per litre). If the blood glucose
level falls down to a dangerous level (due to a heavy exercise or
lack of food), the Alpha cells of the pancreas release glucagon that
effects on the liver cells to increase the blood glucose level. On the
other side, when the blood glucose level rises, a different hormone
so called insulin is released from the Beta cells of the Pancreas.
Insulin brings about more glucose is converted into glycogen by
the Liver. If for some reasons the Pancreas does not perform
normally (i.e., it is unable to control the normal glucose–insulin
interaction), diabetes is diagnosed. Besides physical exercise and
managing diet, insulin therapy is a necessary and often irreplace-
able partner to tackle the hyperglycemia. Improper administration
of insulin is quite dangerous and may severely harm the body in
long term. Intensive insulin therapy requires close monitoring of
the glucose level, a great deal of patient education, and even a
good understanding of the insulin pharmacokinetics that cannot
be properly done by the diabetics specially children and older

people. An automatic closed-loop blood glucose control system is a
promising approach to mitigate these problems (Bequette, 2005;
Chee, Fernando, Savkin, & van Heeden, 2003; Lin et al., 2004).

A closed-loop insulin delivery system generally has three major
components. First, a monitoring device (blood glucose sensor) that
automatically measures the blood glucose level at appropriate
intervals and electronically sends the results to the decision
system. Second, an automated decision system that assesses the
patient condition and determines the amount of insulin needs to
be administered to keep the blood glucose in a good control. This
is the main part of the closed-loop system that the performance of
the system strongly depends on its decisions. Third, an insulin
pump that is instructed to inject the right dose of the insulin to the
person's body. Future closed-loop systems are expected to con-
tinuously monitor the blood glucose level and automatically
deliver the correct insulin dosage to the patient to keep the blood
glucose within an acceptable range (Lin et al., 2004; Ibbini, 2006;
Hernjak & Doyle, 2005).

During the last decades, lot of researchers investigated the
glucose–insulin interaction issue and several automated control
systems were proposed. PID (proportional–integral derivative)
classical blood sugar controller (Chee et al., 2003), optimal glucose
level control mechanism (Ibbini, Masadeh, & BaniAmer, 2004),
adaptive glucose controller (Lin et al., 2004), neuro-fuzzy control
algorithms (Ibbini, 2006; Dazzia et al., 2001), model predictive
control methods (Hernjak & Doyle, 2005; Hovorka et al., 2004;
Lynch & Bequette, 2002), H1 control technique (Parker, Doyle,
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Ward, & Peppas, 2000; Ruiz-Velazquez, Femat, & Campos-Delgado,
2004), μ-synthesis controller (Kovacs, Kulcśar, & Benýo, 2006),
Linear Parameter Varying (LPV) control method (Kovacs, Kulcśar,
Bokor, & Benýo, 2006), and H2=H1 controller (Kovacs, Paĺancz,
Almassy, & Benýo, 2004) are well-known glucose control
approaches reported in the literature (Kovacs, Benýo, Benýo, &
Kovacs, A, 2009).

Almost all known automated closed-loop glucose control
mechanisms aim at regulating the glucose level within the normal
range based solely on the results of the current sampling tests.
Such methods do not take into consideration the long-term history
of the blood glucose level, while an effective decision on the drug
dosage by which the glucose level for a long time remains in a
normal range strongly depends on the patient's past history. In
this paper, a Learning automata-based Blood Glucose Regulation
mechanism so called LBGR is designed in which the past history of
the blood glucose level is recorded to make a long-term decision
on the insulin dosage. By using a continuous action-set learning
automaton, LBGR prescribes an insulin dosage for the patient
based on the history recorded in a probability distribution func-
tion. The selected dose is injected and the blood glucose level is
measured. Depending on the difference between the actual
glucose level and the normal range, LBGR updates the parameters
of the probability distribution function in such a way that the gap
between the actual glucose level and the normal one decreases in the
next tests. After a number of sampling tests, it can be seen that LBGR
selects the optimal insulin dosage by which the glucose level is kept in
a normal range as long as possible. The convergence of the learning
automata to the optimal insulin dosage is theoretically proved.

The rest of the paper is organized as follows. Section 2 briefly
reviews the learning automata theory. In Section 3, the proposed
blood glucose regulation mechanism is presented. In Section 4, a
clinical study is conducted to show the performance of the
proposed insulin therapy system. Section 5 concludes the paper.
In Appendix A, the correctness of the proposed system is theore-
tically proved. This section shows the convergence of the proposed
glucose regulation system to the optimal insulin dose with which
the blood glucose level remains in the normal range.

2. Learning automata theory

A learning automaton (Narendra & Thathachar, 1989;
Thathachar & Harita, 1987) is an adaptive decision-making unit
that improves its performance by learning how to choose the
optimal action from a finite set of allowed actions through
repeated interactions with a random environment. The action is
chosen at random based on a probability distribution kept over the
action-set and at each instant the given action is served as the
input to the random environment. The environment responds the
taken action in turn with a reinforcement signal. The action
probability vector is updated based on the reinforcement feedback
from the environment. The objective of a learning automaton is to
find the optimal action from the action-set so that the average
penalty received from the environment is minimized. Learning
automata have been found to be useful in systems where incom-
plete information about the environment, in which those systems
operate, exists. Learning automata are also proved to perform well
in complex, dynamic and random environments with a large
amount of uncertainties (Poznyak & Najim, 1997). To name
just a few, learning automata have a wide variety of applications
in combinatorial optimization problems (Akbari Torkestani, 2013e,
2013g), computer networks (Akbari Torkestani, 2013a, 2013b,
2013d, 2013h), Grid computing (Akbari Torkestani, 2012b, 2012e,
2013c, 2013f), and Web engineering (Akbari Torkestani, 2012a,
2012c, 2012d).

The environment can be described by a triple fα;β; cg , where
α� fα1;α2;…;αrg represents the finite set of the inputs,
β� fβ1;β2;…;βmg denotes the set of the values that can be taken
by the reinforcement signal, and c� fc1; c2;…; crg denotes the set
of the penalty probabilities, where the element ci is associated
with the given action ai. If the penalty probabilities are constant,
the random environment is said to be a stationary random
environment, and if they vary with time, the environment is
called a non stationary environment. The environments depending
on the nature of the reinforcement signal β can be classified into P-
model, Q-model and S-model. The environments in which the
reinforcement signal can only take two binary values 0 and 1 are
referred to as P-model environments. Another class of the envir-
onment allows a finite number of the values in the interval [0, 1]
can be taken by the reinforcement signal. Such an environment is
referred to as Q-model environment. In S-model environments,
the reinforcement signal lies in the interval [a,b].

Learning automaton can be generally classified into two main
families: Finite action-set learning automata (FALA) and contin-
uous action-set learning automata (CALA) (Narendra & Thathachar,
1989). The action-set of FALA is finite, for example for an r-action
ð2rro1Þ FALA, the action probability distribution is represented
by an r-dimensional probability vector and is updated by a
learning algorithm. When the FALA is used for solving the
optimization problems, we need to discretize the parameter space
so that the actions of the learning automaton can be possible
values of the corresponding parameter. A large action-set leads to
slow convergence of the learning algorithm. To provide a higher
convergence rate, the continuous action-set learning automaton is
proposed. The action-set of such a learning automaton is the real
line. The following provides a brief review of FALA and CALA.

2.1. Finite action-set learning automata

FALA can be classified into two main families: fixed structure
learning automata and variable structure learning automata (the
readers are referred toNarendra & Thathachar (1989) for more
information). Variable structure learning automata are repre-
sented by a triple oβ;α; T4 , where β is the set of inputs, α is
the set of actions, and T is learning algorithm. The learning
algorithm is a recurrence relation which is used to modify the
action probability vector. Let αiðkÞAα and pðkÞ denote the
action selected by learning automaton and the probability vector
defined over the action set at instant k, respectively. Let a and b
denote the reward and penalty parameters and determine the
amount of increases and decreases of the action probabilities,
respectively. Let r be the number of actions that can be taken
by learning automaton. At each instant k, the action probability
vector pðkÞ is updated by the linear learning algorithm given in Eq.
(1), if the selected action αiðkÞ is rewarded by the random
environment, and it is updated as given in Eq. (2) if the taken
action is penalized.

pjðkþ1Þ ¼
pjðkÞþa½1�pjðkÞ� j¼ i

ð1�aÞpjðkÞ 8 ja i

(
: ð1Þ

pjðkþ1Þ ¼
ð1�bÞpjðkÞ j¼ i

b
r�1

� �þð1�bÞpjðkÞ 8 ja i

(
: ð2Þ

If a¼ b, the recurrence Eqs. (1) and (2) are called linear reward-
penalty ðLR�PÞ algorithm, if a⪢b the given equations are called
linear reward-ϵ penalty ðLR�ϵPÞ, and finally if b¼0 they are
called linear reward-Inaction ðLR� IÞ. In the latter case, the action
probability vectors remain unchanged when the taken action is
penalized by the environment.
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