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a b s t r a c t

In this paper the Wiener–Hammerstein Benchmark is identified as a bilinear discrete system. The

bilinear approximation relies on both facts that the Wiener–Hammerstein system can be described by a

Volterra series which can be approximated by bilinear systems. The identification is performed with an

iterative bilinear subspace identification algorithm previously proposed by the authors. In order to

increase accuracy, polynomial static nonlinearities were added to the bilinear model input. These

Hammerstein type bilinear models are then identified using the same iterative subspace identification

algorithm.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear systems are often represented as the interconnec-
tion of Linear Time Invariant (LTI) Systems and static (memory-
less) nonlinearities. These model structures, known as block
oriented models, have the ability capture the dynamics of a large
class of nonlinear systems. As a result, in the last decades a
significant amount of research has been carried out on the
identification of these class of models. The most simple and
common structures are the Hammerstein and the Wiener models.
The first one, was introduced in 1930 by Hammerstein (1930) and
consists in a nonlinear static block in series with an LTI system. In
the second one, proposed in 1958 by Wiener (1958), the nonlinear
block follows the linear one. Despite their simplicity, these
structures accurately describe a wide variety of nonlinear systems
such as distillation columns and heat exchangers (Eskinat,
Johnson, & Luyben, 1991), electrical drives (Balestrino, Landi,
Ould-Zmirli, & Sani, 2001), solid oxide fuel cells (Jurado, 2006),
magneto-rheological dampers for vibration suppression (Wang,
Sano, Chen, & Huang, 2009), biomedical systems such stretch
reflex electromyogram (EMG) data recorded from spinal cord
injured patients (Dempsey & Westwick, 2004), biological systems
(Hunter & Korenberg, 1986), etc. Consequently, they have

attracted much interest in the control and identification area. There
are several approaches to Hammerstein systems identification such
as correlation (Billings & Fakhouri, 1979; Hunter & Korenberg,
1986), relay–feedback (Balestrino et al., 2001) optimization
(Dempsey & Westwick, 2004; Ding & Chen, 2005; Eskinat et al.,
1991; Jurado, 2006) and subspace (Verhaegen & Westwick, 1996)
methods. Both the relay and feedback methods require special input
signals (Gaussian for the former and binary and multistep for the
latter) somehow restricting their application range. Optimization
methods differ in the way they model the nonlinearity, the LTI
model and the optimization algorithm. Good results are achieved
with the nonlinearity modeled as a linear combination of basis
functions (Dempsey & Westwick, 2004; Ding & Chen, 2005; Jurado,
2006), ARMAX (Ding & Chen, 2005; Eskinat et al., 1991; Schoukens,
Widanage, Godfrey, & Pintelon, 2007), Box Jenkins (Schoukens,
Widanage et al. 2007),orthonormal transfer functions basis
(Jurado, 2006) and state-space (Verhaegen & Westwick, 1996) LTI
models. The optimization of ARMAX and Box Jewnkins LTI models is
performed by iterative (Eskinat et al., 1991) or recursive (Ding &
Chen, 2005) algorithms that require good initial models (see
Schoukens, Widanage et al., 2007 for a good initialization method
for Hammerstein system identification methods). Hammerstein
with the nonlinearity represented by a linear combination of non-
linear basis functions and the LTI described with an orthonormal
transfer functions basis model may be efficiently identified by a
non-iterative least square estimator (Jurado, 2006). Subspace meth-
ods are also non-iterative methods that usually lead to accurate
models (Verhaegen & Westwick, 1996).
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Boyd and Chua (1985) have shown that Wiener models are
capable of representing with arbitrary accuracy any time invar-
iant system with a fading memory. On the other hand, they also
can faithfully depict several physical realities. Consequently, a
wide range of nonlinear systems may be described by these
models and they have been successfully used in many engineer-
ing and science fields such as electronics and wireless commu-
nications (Clark, Chrisikos, Muha, Moulthrop, & Silva, 1998),
chemical industry (Bruls, Chou, Haverkamp, & Verhaegen, 1999;
Kalafatis, Wang, & Cluett, 1997), semiconductor manufacturing
(Tian & Fujii, 2005), biology (Hunter & Korenberg, 1986), biome-
dical engineering (Celka & Colditz, 2002), etc. It is well known
that if the input is Gaussian noise, then the LTI subsystem
identification can be separated from the nonlinear block. Based
on this result, several LTI identification methods were adapted to
Wiener systems (Billings & Fakhouri, 1982; Bruls et al., 1999;
Greblicki, 1994; Hu & Chen, 2005; Westwick & Verhaegen, 1996).
However, the Gaussian assumption for the input signal is too
restrictive in practical applications and therefore other
approaches were proposed. Some are based on the invertibility
of the nonlinearity (Bruls et al., 1999; Hunter & Korenberg, 1986;
Kalafatis et al., 1997; Zhang et al., 2006) which is also a quite
restrictive assumption because many output nonlinearities in real
world problems are non-invertible. These restrictions do not exist
in the algorithms proposed by Bai and Reyland (2008), Wigren
(1993), Tian and Fujii (2005), Cerone and Regruto (2005), and
Hagenblad, Ljung, and Wills (2008). Still, the method proposed in
Bai and Reyland (2008) requires a white noise input signal while
the others only need that an input signal with adequate excita-
tion. Wigren (1993) approximated the nonlinearity by a piecewise
linear function and the LTI system was modeled by a transfer
function. Only white measurement noise was considered and the
parameters where estimated through the minimization a quad-
ratic criterion of the output error by a recursive algorithm. Tian
and Fujii (2005) also used a recursive algorithm but they
described the LTI subsystem by a state-space model. The system
was assumed to be disturbed by process and measurement white
noises and a prediction error quadratic loss function was mini-
mized by the Extended Kalman Filter algorithm (Ljung, 1997). The
nonlinearity was approximated by a linear combination of Tche-
bychev polynomials. In Cerone and Regruto (2005) a Wiener
system with an LTI input/output model and a polynomial non-
linearity disturbed by output bounded noise was considered. In
Hagenblad et al. (2008) it has been shown that if only output
noise is assumed, biased estimates may be obtained in common
real life situations where disturbances are also present before the
nonlinearity. The Likelihood function for the problem was for-
mulated and an algorithm was proposed for its maximization. The
consistency of this Maximum Likelihood estimator has been
proved but the algorithm initialization was left as an open
problem.

Model structures with a static nonlinearity sandwiched between
two LTI systems are known as Wiener–Hammerstein models. Non-
linear system identification of this model structure has been studied
for many years. Existing approaches can be roughly divided in the
following classes: (i) nonparametric time domain methods (Billings
& Fakhouri, 1978, 1980, 1982; De Brabanter, 2009; Fakhouri,
1980a,b; Falck, Pelckmans, Suykens, & De Moor, 2009; Korenberg
& Hunter, 1986; Marconato & Schoukens, 2009; Pillonetto & Chiuso,
2009), (ii) parametric time-domain input/output methods (Bershad,
Bouchired, & Castanie, 2000, 2001; Boutayeb & Darouach, 1995;
Chen & Fassois, 1997; Emara-Shabaik, Ahmed, & Al-Ajmi, 2002;
Moustafa & Emara-Shabaik, 2000; Piroddi, Farina, & Lovera, 2009;
Truong & Wang, 2009; Vörös, 2007; Wills & Ninness, 2009), (iii)
parametric time domain state-space methods (Ase, Katayama, &
Tanaka, 2009; Lopes dos Santos, Ramos, & Martins de Carvalho,

2009a; Paduart, Lauwers, & Pintelon, 2009; Van Mulders, 2009), (iv)
frequency domain methods (Brillinger, 1977; Crama & Schoukens,
2005; Goodman, Herman, Bond, & Miller, 2009; Lauwers, Pintelon, &
Schoukens, 2009; Schoukens, Pintelon, & Enqvist, 2007; Tan &
Godfrey, 2002). These approaches make use of techniques such us
correlation (Billings & Fakhouri, 1978, 1980, 1978; Fakhouri,
1980a,b) and/or Fourier analysis (Billings & Fakhouri, 1978; Crama
& Schoukens, 2005; Goodman et al., 2009; Schoukens, Pintelon et al.
2007; Tan & Godfrey, 2002), optimization and/or subspace based
(Ase et al., 2009; Bershad et al., 2000; Lopes dos Santos et al., 2009a;
Paduart et al., 2009; Van Mulders, 2009; Wills & Ninness,
2009),machine learning (De Brabanter, 2009; Falck et al., 2009;
Marconato & Schoukens, 2009), etc. In 2009, an invited session on a
Wiener–Hammerstein Benchmark for nonlinear identification was
organized for the SYSID 2009. The objective of this benchmark is ‘‘to
compare different black-box identification methods to model non-
linear systems’’ in order ‘‘to get a better understanding about the
capabilities of different modeling and identification methods’’
(Schoukens, Suykens, & Ljung, 2008). Twelve papers were presented
with methods ranging from the traditional frequency response
analysis to recent learning theory algorithms (Ase et al., 2009; De
Brabanter, 2009; Falck et al., 2009; Lauwers et al., 2009; Lopes dos
Santos, Ramos, & Martins de Carvalho, 2009b; Marconato &
Schoukens, 2009; Paduart et al., 2009; Pillonetto & Chiuso, 2009;
Piroddi et al., 2009; Truong & Wang, 2009; Van Mulders, 2009; Wills
& Ninness, 2009).

It is well known that a bilinear system can approximate lower
order kernels of nonlinear systems Volterra series expansion
(Bruni, DiPillo, & Koch, 1974; Desai, 1986; Favoreel, 1999; Hsu,
Desai, & Crawley, 1985; Isidori, 1973). However, when the high
order Volterra kernels are significant bilinear systems may have
poor fit. Thus, these models can only describe a limited class of
nonlinear systems. Despite this limitation, they still provide a
higher degree of approximation to nonlinear models than tradi-
tional linear models. On the other hand, the type of nonlinearity
that these systems exhibit makes their structure one of the
simplest and, in some sense, the closest to linear systems. This
allows the application of several techniques and procedures
already developed for linear systems (Bruni et al., 1974). More-
over, since a bilinear system can be seen as a Linear Parameter
Varying (LPV) System with the input signal as the scheduling
parameter, they also benefit from the recent development of LPV
techniques. See Tóth (2010) for an excellent survey on LPV system
modeling, identification and control methods.

In this work we show that it is possible to model the Wiener–
Hammerstein Benchmark system with a Hammerstein–Bilinear
model. This is done by comparing the Volterra series of both the
Wiener–Hamerstein and the bilinear system. From this compar-
ison it is concluded that the introduction of fictional inputs
uðkÞ2, uðkÞ3, . . ., leads to a more accurate approximation. This
result may be extended for any Wiener–Hammerstein system
provided that the nonlinearity can be expanded in a MacLaurin
series.

The Wiener–Hammerstein system benchmark is then identi-
fied with discrete Hammerstein–Bilinear models with several
degrees in the input polynomial. We then verified that the mean
square errors of the identified models decrease with the degree of
the polynomial.

The Hammerstein–Bilinear models were estimated by an
iterative subspace algorithm previously proposed by the authors
in Lopes dos Santos, Ramos, and Martins de Carvalho (2005) and
Lopes dos Santos et al. (2009b). This paper is a more complete
version of Lopes dos Santos et al. (2009a) presented in the SYSID
2009 Benchmark session.

The paper is organized as follows. In Section 2 the benchmark
problem is described. The bilinear and the Hammerstein type
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