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Abstract

This paper considers an iterative algorithm for the identification of structured nonlinear systems. The systems considered consist of the

interconnection of a MIMO linear systems and a MIMO nonlinear system. The considered interconnection structure can represent as

particular cases Hammerstein, Wiener or Lur’e systems. A key feature of the proposed method is that the nonlinear subsystem may be

dynamic and is not assumed to have a given parametric form. In this way the complexity/accuracy problems posed by the proper choice

of the suitable parametrization of the nonlinear subsystem are circumvented. Moreover, the simulation error of the overall model is

shown to be a nonincreasing function of the number of algorithm iteration. The effectiveness of the algorithm is tested on the problem of

identifying a model for vertical dynamics of vehicles with controlled suspensions from both simulated and experimental data.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the paper, the problem of using data and physical
information in the identification of complex nonlinear
systems is investigated. Consider a discrete time MIMO
system represented by a regression function f o ¼

½f 1
o; . . . ; f

q
o� describing the time evolution of system output

as
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Identification aim is to find estimates f̂ of f o from a set of
noise corrupted measurements ~yi

t and ~wi
t; i ¼ 1; . . . ; q; t ¼

1; 2; . . . ;T of outputs yi
t and of regressors wi

t, possibly

minimizing some measure of the identification error f o � f̂ .
Because of finiteness of data, no finite bound or confidence
interval can be derived for the identification error if no
further information is available on f oðwÞ. This information
is typically given by assuming that it belongs to some
parametric family f ðw; yÞ of functions. When possible, first
principle laws are used to derive equations describing the
evolution of the variable of interest, where the functional
forms of involved nonlinear functions are known, depend-
ing on some unknown parameters y. In other situations,
due to the fact that the laws are too complex or not
sufficiently known, this is not possible or not convenient
and a black-box approach is taken, considering that f o

belongs to a suitably chosen parametrized set of functions
f ðw; yÞ ¼

Pr
i¼1 aisiðw;biÞ; bi 2 Rq; where y ¼ ½a;b� and the

si’s are given functions, e.g. piece-wise linear, polynomial,
sigmoidal, wavelet, etc. (Haber & Unbehauen, 1990;
Isermann, Ernst, & Nelles, 1997; Narendra & Mukhopad-
hyay, 1997; Sjöberg et al., 1995). In both cases, physical or
black-box modeling, the problem is reduced to estimating
the parameters y from data. This task may be performed
by minimizing some suitable functional, as done e.g. in
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prediction error methods, which exhibit important statis-
tical properties (Bauer & Ninness, 2002; Ljung & Caines,
1979). However, several problems may arise. The func-
tional to be minimized may result in most cases not convex
and trapping in local minima may occur, causing serious
accuracy problems even in case of exact modeling, i.e. that
f oðwÞ ¼ f ðw; yo

Þ for some ‘‘true’’ yo. Indeed, in general
both first principle laws or black-box model selection
procedures can give only approximate modeling of the
involved phenomena, i.e. not completely correct informa-
tion is provided to the identification procedure, since
f oðwÞaf ðw; yÞ; 8y. The incorrect part of the assumed
information may counteract the positive effects induced
on identification accuracy by the correct part. Evaluating
the overall balance of these two effects on the identification
error, though actively investigated in the last decade for the
case of linear systems (Chen & Gu, 2000; Milanese,
Norton, Piet Lahanier, & Walter, 1996; Partington,
1991), is a largely open problem for nonlinear systems.

These considerations suggest the interest in identification
methods able to account for different kinds of knowledge
about the system, able to provide information which may
be to a large extent considered correct. In many applica-
tions, this can be provided by information on the physical
interconnection structure of the system to be identified,
allowing its decomposition in subsystems, connected
through unmeasured signals. Typical cases considered in
the literature are Hammerstein, Wiener and Lur’e systems,
consisting of two subsystems, a linear dynamic one and a
nonlinear static one, connected in cascade or feedback
form (Bai, 2002, 2003; Billings & Tsang, 1990; Crama &
Shoukens, 2001; Lang, 1997). Among the many approaches
proposed in the literature for the identification of such
classes of systems, iterative algorithms have been proposed
(see e.g. Narendra & Gallman, 1966; Rangan, Wolodkin, &
Poolla, 1995; Stoica, 1981; Vörös, 1999) based on the fact
that if the interconnecting signals are known, the identi-
fication problem reduces to the identification of each
subsystems from their input–output data. The guesses on
the interconnecting signal are then iteratively adapted on
the base of the identified submodel at each iteration.
Though their convergence properties are not completely
understood (Crama & Shoukens, 2001; Narendra &
Gallman, 1966; Rangan et al., 1995; Stoica, 1981; Vörös,
1999) these algorithms proved to give satisfactory results in
many simulated and real problems.

In this paper we propose an iterative algorithm, based on
the same principle, able to deal with more complex
interconnection structures which may arise in practical
applications, where the nonlinear subsystems may be
dynamic.

A key feature of the method is that the nonlinear
dynamic subsystems are not supposed to have a given
parametric model. In this way the above discussed
problems posed by the proper choice of a suitable
parametrization and the drawbacks related to the effects
of approximate modeling are circumvented. Moreover, the

simulation error of the overall model is shown to be a
nonincreasing function of iterations. Indeed, the algorithm
may converge in few iterations to very satisfactory
estimates even for quite rough initializations, as shown in
the presented example, related to the identification of the
vertical dynamics of vehicles with controlled suspensions.
Two sets of data are used. The first set is composed of
simulated data, thus allowing direct comparisons of
identified subsystems and connecting signal with the
‘‘true’’ ones generating the data. The second set consists
of experimental data acquired on a real car, thus showing
that the proposed structured identification algorithm may
prove to give quite good results in nontrivial real
applications.

2. Structured experimental modeling

In the paper it is considered that the system to be
identified, using information on its physical interconnec-
tion, can be represented by the decomposition structure of
Fig. 1.
All the signals u; y; v may be multivariable. Submodels

M1 and M2 are dynamic MIMO discrete time systems, one
linear and the other nonlinear. The problem is to identify
M1 and M2, supposing that noise corrupted measurements
~u ¼ ½ ~u1; . . . ; ~uT � and ~y ¼ ½ ~y1; . . . ; ~yT � of input and output
sequences are available, but the interconnecting sequence
v ¼ ½v1; v2; . . .� is unknown.
Note that this structure allows to represent widely

studied classes of models such as: Hammerstein models,
where M1 is a static nonlinearity vðtÞ ¼ f ðuðtÞÞ not
depending on y and M2 is linear dynamic; Wiener models,
where M2 is a static nonlinearity yðtÞ ¼ f ðvðtÞÞ and M1 is
linear dynamic with transfer function from y to v equal to
zero; Lur’e models, where M1 is a static nonlinearity vðtÞ ¼

f ðuðtÞ � vðtÞÞ and M2 is linear dynamic. Indeed, more
complex structures can be represented as well, e.g. the one
of Fig. 6, arising in modeling vehicles vertical dynamics.
Assuming parametric forms M1ðy1Þ and M2ðy2Þ for the

two subsystems, estimates of y1; y2 can be obtained e.g. by
prediction error methods. Even if linear parametrizations
are adopted for M1 and M2, the overall optimization
problem is not convex, possibly leading to poor identifica-
tion results because of trapping in local minima. Alter-
native iterative procedures have been proposed for the
identification of Hammerstein or Wiener models, based on
the fact that if interconnecting signal v is known, the
problem reduces to estimation of M1ðy1Þ and M2ðy2Þ from
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Fig. 1. Structure decomposition.
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