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a b s t r a c t

State of charge (SoC) estimation is of key importance in the design of battery management systems.
An adaptive SoC estimator, which is named AdaptSoC, is developed in this paper. It is able to estimate
the SoC in real time when the model parameters are unknown, via joint state (SoC) and parameter
estimation. The AdaptSoC algorithm is designed on the basis of three procedures. First, a reduced-
complexity battery model in state-space form is developed from the well-known single particle model
(SPM). Then a joint local observability/identifiability analysis of the SoC and the unknown model
parameters is performed. Finally, the SoC is estimated simultaneously with the parameters using the
iterated extended Kalman filter (IEKF). Simulation and experimental results exhibit the effectiveness of
the AdaptSoC.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Lithium-ion (Liþ) batteries have gained widespread use in
numerous applications from consumer electronics to power tools
soon after their first commercialization in 1991, thanks to their
higher capacity but reduced size, superior power performance
with longer cycle life (Nishi, 2001). Recent advances in electric
vehicles and smart grids further strengthen the leading role of Liþ

batteries as electrical energy storage devices. Nowadays battery
management systems (BMSs) are used in almost all Liþ battery
powered applications to monitor the battery status and regulate
the charging and discharging processes for real-time battery
protection and performance enhancement (Chaturvedi, Klein,
Christensen, Ahmed, & Kojic, 2010; Pop, Bergveld, Notten, &
Regtien, 2005). A fundamental component in a BMS is the module
for estimation of the state of charge (SoC), the design of which has
been a long-standing challenge and will be the focus of this paper.

Literature review: SoC can be defined as the percentage ratio of
the present battery capacity to the maximum capacity. Two
straightforward yet typical non-model-based SoC estimation meth-
ods are voltage translation and Coulomb counting. The former
infers the SoC from the predetermined open circuit voltage (OCV)–
SoC lookup table using the OCV measurement. Despite reliability,
it requires the battery to rest for a long period with cutting off

from the external circuit to measure the OCV, thus restricting its
practical implementation without interrupting system operation.
Coulomb counting, which is based on numerical integration of the
current over time, may suffer from a ‘drift’ of SoC estimates from
the true values due to cumulative integration errors and noise
corruption. For a survey of both methods, refer to Pop et al. (2005),
Piller, Perrin, and Jossen (2001) and the references therein.

In recent years, considerable attention has been directed
toward model-based approaches for real-time SoC estimation with
improved accuracy. Equivalent circuit models (ECMs), which
include virtual voltage source, internal resistance and RC network
to simulate battery dynamics, have been used extensively. The
state observability of a ECM is studied in Chiasson and Vairamohan
(2006), by which a SoC estimation algorithm is designed. In Plett
(2004), the extended Kalman filter (EKF) is applied to ECMs to
estimate the SoC with approximate dynamic error bounds. The
estimation results are enhanced in Plett (2006) using the sigma-
point Kalman filter (SPKF) that is known to have better accuracy
and numerical stability. Other nonlinear observer-based design
approaches have also been used to construct ECM based SoC
estimators. Among them, sliding mode observer (Kim, 2006),
adaptive model reference observer (Verbrugge & Tate, 2004)
and Lyapunov-based observer (Hu & Yurkovich, 2012) are
highlighted here.

Another important type of battery models is built upon
electrochemical principles that describe intercalation and deinter-
calation of Liþ ions and conservation of charge within a battery.
Such electrochemical models have the merit of ensuring each
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model parameter to retain a proper physical meaning. However,
they have a complex structure based on partial differential
equations (PDEs), often necessitating model simplification or
reduction. A linear reduced-order electrochemical model is estab-
lished in Smith, Rahn, and Wang (2008), to which the classical
KF is employed for SoC estimation. In Domenico, Di Fiengo, and
Stefanopoulou (2008), the EKF is implemented to estimate SoC
using an ordinary differential equation (ODE) model obtained from
PDEs by finite-difference discretization. The unscented Kalman
filter (UKF) is used in Santhanagopalan and White (2010) to avoid
model linearization in SoC estimation. Rather than using the ODE
model after simplification, nonlinear SoC estimators are also
developed in Klein et al. (2013), Moura, Chaturvedi, and Krstic
(2012) through direct manipulation of PDEs.

Adaptive SoC estimation, which enables the SoC to be esti-
mated when the model parameters are unavailable, has been
discussed for some ECMs and electrochemical models, e.g., Plett
(2006), Barbarisi, Vasca, and Glielmo (2006), and McIntyre, Burg,
Dawson, and Xian (2006). This paper makes new contributions to
study of this topic, with the aim of developing an adaptive SoC
estimator that is easy to implement and sound both theoretically
and practically.

Statement of contributions: An electrochemical battery model
with reduced complexity in structure is derived from the single
particle model (SPM) first. For this model, a detailed analysis
of joint local observability/identifiability of the SoC variable
and the model parameters is performed, which indicates that
the SoC variable can be locally identified for admissible input. This
result shows that adaptive estimation of SoC is achievable. On the
basis of the analysis, an adaptive SoC estimator, AdaptSoC, is built
using the iterated extended Kalman filter (IEKF), where
the SoC and model parameters are estimated concurrently but
only SoC estimates are reliable. Through both simulation and
experimental study, the AdaptSoC algorithm is shown to have
excellent SoC estimation performance in the presence of unknown
parameters. Meanwhile, its efficient implementation lends itself
to practical application. The analysis and results presented in
this paper can also be readily extended to other types of battery
models.

2. A reduced-complexity model

In this section, the working mechanism of Liþ batteries is
briefly introduced first, followed by a review of the single particle
model (SPM). Then a reduction of the SPM is developed for the
purpose of SoC estimation.

2.1. The working mechanism of Liþ batteries

A schematic description of a Liþ battery is shown in Fig. 1(a).
The positive electrode is typically made from Li compounds, e.g.,
LixMn2O4 and LixCoO2. Small solid particles of the compounds are
compressed together, giving birth to a porous structure. The
negative electrode is also porous, which usually contains graphite
particles. The interstitial pores at both electrodes provide inter-
calation space, where the Liþ ions can be moved in and out
and stored. The electrolyte contains free ions and is electrically
conductive, where the Liþ ions can be transported easily. The
separator physically separates the electrodes apart. It allows
the migration of Liþ ions from one side to the other, but prevents
electrons from passing through. The electrons are thus forced to
flow through the external circuit.

During the charging process, Liþ ions are extracted from
the particles at the positive electrode into the electrolyte, and

Fig. 1. (a) Schematic characterization of a Liþ battery; (b) the single-particle model.

Table 1
Definitions and nomenclature.

Variables
Φs Electric potential in the solid electrode
Φe Electric potential in the electrolyte
cs Concentration of Liþ in the solid electrode
css Concentration of Liþ at a particle0s spherical surface
J Molar flux of Liþ at the particle0s surface
J0 Exchange current density
η Overpotential of reaction in the cell
U Open-circuit potential
I External circuit current
V Terminal voltage
r Radial dimension of the particle

Physical parameters
Ds Diffusion coefficient of Liþ in the solid electrode
r Radius of the spherical particle
F Farady0s constant
S Specific interfacial area
T Temperature of the cell
αa Anodic charge transport coefficient
αc Cathodic charge transport coefficient
R Universal gas constant
Rc Phase resistance
Rf Film resistance of the solid electrolyte interphase
ρ Coulombic efficiency of the cell
Cn Nominal capacity of the cell

Subscripts
s Solid electrode phase
e Electrolyte phase
n Negative electrode
p Positive electrode
j n or p
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