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a b s t r a c t

Taking gold nanoparticles with different hydrophilic coatings as an example, it is investigated whether
capillary electrophoresis in combination with Taylor dispersion analysis allows for the precise
determination of mean electrophoretic mobilities, electrophoretic mobility distributions, and zeta poten-
tials in a matrix of exactly known composition and the calibration-free determination of number-
weighted mean hydrodynamic radii. Our experimental data confirm that the calculation of the zeta
potential for colloidal nanoparticles with f > 25 mV requires to take the relaxation effect into account.
Because of the requirement to avoid particle–wall interactions, a solution of disodiumtetraborate decahy-
drate (borax) in deionized water had been selected as suitable electrolyte. Measurements of the elec-
trophoretic mobility at different ionic strength and application of the analytic approximation
developed by Ohshima show that in the present case of a buffered solution with a weak electrolyte
co-ion and a strong electrolyte counterion, the effective ionic drag coefficient should be approximated
with the ionic drag coefficient of the counterion. The obtained results are in good agreement with theo-
retical expectations regarding the dependence of the zeta potential and the electrokinetic surface charge
density on the ionic strength. We also show that Taylor dispersion analysis (besides estimation of the
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number-weighted mean hydrodynamic radius) provides additional information on the type and width of
the number-weighted particle distribution.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Colloidal nanoparticles (NPs) that are dispersed in an aqueous
medium (electrolyte solution) often are charged in order to war-
rant colloidal stability [1]. Though also steric repulsion is fre-
quently used for stabilizing NPs in aqueous solution, stabilization
by electrostatic repulsion is in particular interesting for obtaining
water-soluble NPs with small hydrodynamic radius. Charge is
introduced by the adsorption of ions onto the surface and/or the
protonation or dissociation of acidic or basic groups bound to the
surface [2]. If the surface charge density is very high, counterions
(having a charge of opposite sign to that of the NPs) are in part neu-
tralizing these charges via charge condensation, so that the ‘‘effec-
tive surface charge density’’ becomes lower than the total charge
density [3]. According to the Poisson–Boltzmann approach the
effective charge of the NP is compensated by a diffuse layer of
counterions around the NP (the ionic cloud [4]), in which the elec-
tric potential can be described (in the static case) by the Poisson–
Boltzmann equation, considering the electrolyte ions as point
charges.

Colloidal dispersions of charged NPs (having a charge of equal
sign) are stabilized by electrostatic forces. Consequently, the effec-
tive charge Qeff, the electrokinetic surface charge density rf, and
the electric potential at the surface of shear (the electrokinetic
potential f) are important quantities in the characterization of
NPs. These quantities are difficult to be measured experimentally.
Typically, the NPs of interest are immersed in an electrolyte of
known composition, in which the electrophoretic mobility of the
NPs is determined by application of a constant homogeneous elec-
tric field or by application of an alternating electric field. The deter-
mined electrophoretic mobility l is then related to the
electrokinetic potential f (also denoted zeta potential) which is
the electric potential near the surface of the NP, where the (rela-
tive) velocity of the liquid is zero (surface of shear).

For spherical NPs with higher zeta potential (f > 25 mV) the
relaxation effect, i.e. the retarding force due to a deformation of
the ionic cloud, must not be neglected [5,6]. Neglecting the relax-
ation effect in the calculation of the zeta potential will result in
an intolerable error in the calculated value for f. Taking the relax-
ation effect into account results in a set of differential equations
that cannot be solved analytically, even in the case of a sym-
metrical 1:1 electrolyte, assuming that the NPs are ideal spheres
with a homogeneous surface charge density, and assuming that
NP–NP and ion–ion interactions can be neglected [7,8].

Wiersema et al. [9] were the first who succeeded in solving
these equations numerically. They calculated a limited set of data
for a hypothetical 1:1 electrolyte (and some data for other types
of electrolyte) with cations and anions, both having a dimension-
less ionic drag coefficient of 0.184 (see Eq. (5)). According to the
definition made by Wiersema et al. the ionic drag coefficient is a
dimensionless reduced parameter, which is inversely proportional
to the limiting equivalent conductance of the ion. As that would
have consumed too much computer time (at the time of their
investigations), the ionic drag coefficient of the counterion and
the co-ion was only varied for one set of scaled zeta potential
and reduced radius, although the authors emphasized the impor-
tance of this parameter. However, from the few data points pre-
sented in their paper one can conclude that a variation in the
ionic drag coefficient of the co-ion (here between 0.0655 and

0.74) has only a marginal impact on the electrophoretic mobility,
while there is a strong impact when varying the ionic drag coeffi-
cient of the counterion.

The aspect ‘‘influence of the ionic drag coefficients of the co-ion
and the counterion on the electrophoretic mobility’’ was not con-
sidered by O’Brien and White [10] when recalculating elec-
trophoretic mobilities (with an improved algorithm) for varied
scaled zeta potential and reduced radius. In all cases, O’Brien and
White assumed a solution of KCl as electrolyte.

The analytic approximation presented by Ohshima [11] for the
general case includes the calculation of the arithmetic mean of the
dimensionless ionic drag coefficients of the co-ion and the counter-
ion. With this analytic approximation, data were calculated for a
solution of KCl as electrolyte and compared to those results
obtained by O’Brien and White.

Independent of the theoretical approach, the experimental basis
of a precise determination of f is a precise determination of the
electrophoretic mobility in an electrolyte of exactly known com-
position. In this regard capillary electrophoresis (CE) has come into
the focus of interest. CE is a separation technique that permits to
separate the NPs of interest from further constituents of the sam-
ple and to separate NPs according to differences in size and/or their
surface charge density [12–21]. CE has been shown to enable to
calculate conversion degrees [22] and to probe NP–protein interac-
tions [23]. In addition, it allows to gain insight into the presence or
absence of agglomerates [24,25], to detect fractions with different
migration behaviors [26] (e.g. in the case of a bimodal distribution)
and (as will be shown in the second paper of this series [27]) in
favorable circumstances it allows for calculating NP size dis-
tributions from recorded electropherograms.

At the same time, CE requires the use of a buffered electrolyte to
provide a separation medium of defined pH and to keep the veloc-
ity of the electroosmotic flow constant. In principle, buffering
needs the use of a weak acid or a weak base, which is in a protona-
tion equilibrium with its conjugate base or acid. Consequently, buf-
fers contain weak electrolytes with an incomplete degree of
dissociation or protonation. From this need it can be concluded
that in the general case (for buffers employed in CE) the co-ion
and the counterion will have very different dimensionless ionic
drag coefficients.

The same instrumentation, which is employed for CE, can be
also used for Taylor dispersion analysis (TDA), which was recently
demonstrated by several working groups [28,29]. TDA
allows (independent of capillary electrophoresis) the precise
determination of number-weighted or volume-weighted mean
hydrodynamic radii (a needed quantity for the correct determina-
tion of f assuming identity of the sphere radius a (according to the
definition given by Wiersema et al. [9]) and the hydrodynamic
radius rH obtained from application of the Stokes–Einstein
equation).

For example, Ibrahim et al. [29] succeeded in demonstrating
that CE (determination of mean electrophoretic mobility l) in
combination with TDA (determination of mean hydrodynamic
radius rH) permits the determination of mean effective charges
(or mean effective charge numbers zeff) for small ions, polyelec-
trolytes and organic and inorganic NPs. However, although in some
instances Ibrahim et al. employed borax dissolved in water as
background electrolyte, they did not discuss the influence of the
electrolyte ion mobilities on the results obtained.
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