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a b s t r a c t

In this paper a control chart for monitoring the process mean, called OWave (Orthogonal Wavelets), is
proposed. The statistic that is plotted in the proposed control chart is based on weighted wavelets
coefficients, which are provided through the Discrete Wavelets Transform using Daubechies db2 wavelets
family. The statistical behavior of the wavelets coefficients when the mean shifts are occurring is pre-
sented, and the distribution of wavelets coefficients in the case of normality and independence as-
sumptions is provided. The on-line algorithm of implementing the proposed method is also provided.
The detection performance is based on simulation studies, and the comparison result shows that OWave
control chart performs slightly better than Fixed Sample Size and Sampling Intervals control charts (X ,
EWMA, CUSUM) in terms of Average Run Length. In addition, illustrative examples of the new control
chart are presented, and an application to Tennessee Eastman Process is also proposed.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Modern industrial systems are being more and more complex,
and they are often affected by disturbances of the operating con-
ditions, which then can lead to generate faults or assignable/spe-
cial causes.

Statistical Process Control (SPC) aims to monitor processes in
order to improve quality performance and/or ensure safety op-
eration. SPC includes mainly the implementation of control charts,
which are effective to detect assignable causes. Two parameters
are generally monitored under the Gaussian model: the mean that
represents the process target and the variance that characterizes
the process dispersion. Several control charts, such as X control
chart (Shewhart, 1925), EWMA (Roberts, 1959), and CUSUM (Page,
1954), have been provided to detect mean change. In order to
improve the control charts detection performance, some para-
meters can be made variable, and thus providing adaptive control
charts, such as Variable Sampling Intervals (VSI) control
charts (Reynolds, Amin, Arnold, & Nachlas, 1988), Variable Sam-
pling Size (VSS) control charts (Costa, 1994), and Variable Sample
Size and Sampling Intervals (VSSI) control charts (Arnold & Rey-
nolds, 2001; Costa, 1997). Tagaras (1998) presented an overview
regarding the evolution of adaptive control charts. Recently, a
comparison study was done to evaluate the effectiveness and ro-
bustness of nine control charts, for monitoring process mean (Ou,
Wu, & Tsung, 2012). The authors concluded that, in terms of FSSI

(Fixed Sample Size and Sampling Intervals), CUSUM/EWMA are
the best charts, and the optimal SPRT (Sequential Probability Ratio
Test) is the best chart in terms of adaptive control charts. Gen-
erally, adaptive control charts perform better than FSSI charts, but
they are still more challenged for applications (Baxley, 1995).

In the last two decades, the association of wavelets analysis
with statistical process control has been widely developed, espe-
cially in the multivariate SPC context. Multi-Scale SPC involves
methods that combine the wavelet multi-scale decomposition and
classical SPC techniques ( X , EWMA, CUSUM, PCA, etc.). Bakshi
(1998) proposed a multi-scale monitoring methodology based on
monitoring the reconstructed signals after thresholding the wa-
velets coefficients in the Principal Component Analysis (PCA)
space. Bakshi (1999) and Aradhye, Bakshi, Strauss, and Davis
(2003) have discussed the wavelet properties for monitoring
process and concluded that the multi-scale methods are not as
efficient as those dedicated to specific changes. Kano et al. (2002)
compared several techniques such as dissimilarity measure (DIS-
SIM) (Kano, Hasebe, Hashimoto, & Ohno, 2002), Multi-Scale Prin-
cipal Component Analysis (MS-PCA) (Bakshi, 1998), and Moving-
PCA (Kano et al., 2002). Through the benchmark Tennessee East-
man Process (TEP) (Downs & Vogel, 1993) they showed that MS-
PCA technique is better than conventional methods in some cases
of TEP faults and performs as conventional methods for other
faults. In addition, Moving-PCA is also better than MS-PCA in some
cases. The percentage of correct detection (detection reliability)
was used as the performance indicator for these methods. Lu,
Wang, and Gao (2003) highlighted the usefulness of wavelets
analysis in order to detect faults with the same time behavior and
different frequencies in the case of Three Tank Process and
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Tennessee Eastman Process. Yoon and MacGregor (2004) showed
that multi-scale analysis might help us to isolate faults effectively,
especially when the fault frequency is known (see also Reis &
Saraiva, 2006). Lee, Park, and Vanrolleghem (2005) have proposed
a methodology for monitoring batch processes; the multi-way PCA
(Nomikos & MacGregor, 1994) was associated with wavelets ana-
lysis. The authors showed anew the benefit of wavelets analysis in
order to improve the monitoring performance. Other associations
using wavelets are still quite underdeveloped in the literature,
such as multi-scale Partial Least Squares regression (PLS). A lit-
erature review regarding wavelet-based techniques for process
monitoring is done by Ganesan, Das, and Venkataraman (2004).

Nevertheless, comparative studies are still unsatisfactorily
presented in the literature, except those concerning the multi-
scale PCA. Generally, the Haar wavelet is used in the field of MS-
SPC and studies using other wavelets families are required as
Aradhye et al. (2003) have noted. Moreover, there is a lack
in the MS-SPC literature regarding the use of the Average Run
Length (ARL) as the performance indicator of the proposed
methodologies.

The main objective of this paper is to provide a new control
chart based on weighted wavelets coefficients, in order to monitor
the process mean. Daubechies db2 wavelet is used to generate
wavelets coefficients, and the ARL is calculated in order to evaluate
the performances of the proposed control chart.

This paper is organized as follows: the second section in-
troduces the wavelets multi-scale decomposition and its dis-
tributional characteristics; we emphasize the ability of wavelets
coefficients to detect mean change. The third section presents the
theoretical aspects related to the construction of the proposed
new control chart. Finally, in the last section conclusions and
perspectives are presented.

2. Wavelets and detectability

Wavelets functions were introduced, at the first time by Jean
Morlet in 1984, in the context of geophysical signal processing.
Afterwards, wavelet theory has been developed profoundly
(Daubechies, 1992; Mallat, 1989; Meyer, 1993). Today, wavelets are
applied in different domains (Manufacturing Gao & Yan, 2010,
Image and Signal Mallat, 1999; Meyer, 1993, Health Akay, 1998,
Physics and Mechanics Fan & Zuo, 2006; Liang, Elangovan, & De-
votta, 1998; Odgaard, Stoustrup, & Wickerhauser, 2006; Peng &
Chu, 2004; Sun, Zi, & He, 2014; Yan, Gao, & Chen, 2014, etc.).

Wavelets functions are defined as follows:

ψ Ψ( ) = ( − ) ( )t t k2 2 1j k
j j

,
/2

where j represents the scale, k is the translation parameter, and Ψ
is the mother wavelet.

The multiresolution concept (Mallat, 1989) proposes a frame-
work to analyse signals with perfect reconstruction, in which
wavelets coefficients, approximations ( )a kj and details ( )d kj are
given across filter banks, as follows:
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where =a x0 the original signal; ∈j k Z, ; l is the filter length; h
and g are scaling and wavelets filters respectively.

In the following theorem, we present an original result

regarding the parameters of the probability distribution of wave-
lets coefficients (details and approximations). This result will be
used to design the OWave control chart.

Theorem 1. Assume that = [ ]X x x x, ,.., n1 2 is a signal, where xi are
independent and identically distributed random variables as follows:

μ σ⇝ ( )x ,i 0 0
2 . Consider Orthonormal and Biorthogonal compactly

supported wavelets (Haar, Daubechies, Symlets, Coiflets, Discrete
Meyer, Biorthogonal, Reverse Biorthogonal). The multiresolution
analysis of X provides wavelets coefficients as follows:
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Which are identically distributed random variables, and independent
if the orthonormal wavelets are used, else they are slightly correlated.

The wavelets coefficients are summation of normally dis-
tributed variables consequently they follow the normal distribu-
tion (see Appendix). Furthermore, for orthonormal wavelets fa-
milies the wavelets coefficients are independent at each scale. The
independence of wavelets coefficients is a consequence of the
projection into orthonormal bases. This is not the case for Bior-
thogonal bases where the correlation coefficient can easily be es-
timated by empirical study.

Here, the term detectability means the capacity of wavelets
coefficients to detect mean changes in original data. From Theo-
rem 1, we show that wavelets coefficients present some interest-
ing distributional characteristics that reveal the original data fea-
tures. Indeed, the approximation coefficients amplify the mean of
the original data and may have a small variance, as in the case of
Biorthogonal wavelets. Nevertheless, that may not be a useful
approach since Biorthogonal coefficients are correlated. So in this
case, in order to use effectively approximation wavelets to detect
mean change one must take into account this autocorrelation. On
the other side, details coefficients have a mean equal to zero. This
characteristic could be useful to detect change in variance, because
the mean change does not affect the details coefficients, as we
have shown in our previous work (Cohen, Tiplica, & Kobi, 2016), in
which we proposed DeWave control chart in order to monitor
variance change.

In this paper, we propose a new control chart named OWave in
order to monitor the process mean. Wavelets coefficients are
provided through the Discrete Wavelet Transform using Daube-
chies db2 wavelet (Daubechies, 1992), which is an orthonormal
wavelet. Its decomposition filters are defined as follows:

= [ − ] ( )h 0.1294; 0.2241; 0.8365; 0.4830 4n

= [ − − − ] ( )g 0.4830; 0.8365; 0.2241; 0.1294 5n

One can conclude from Theorem 1 that:
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2.1. An illustrative example

In this example, we consider a window size of length L¼8
observations/subgroups, as the smallest one that can be used ra-
tionally with the db2 wavelet, and in which the discrete wavelet
transform is applied. Consequently, we get eight wavelets coeffi-
cients at the scale one (maximum decomposition level in this
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