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a b s t r a c t

In this paper, an integrated vehicle and wheel stability control is developed and experimentally eval-
uated. The integrated structure provides a more accurate solution as the output of the stability controller
is not altered by a separate unit, therefore its optimality is not compromised. Model predictive control is
used to find the optimal control actions. The proposed control scheme can be applied to a wide variety of
vehicle driveline and actuation configurations such as: four, front and rear wheel drive systems. Com-
puter simulations as well as experiments are provided to show the effectiveness of the proposed control
algorithm.

& 2016 Published by Elsevier Ltd.

1. Introduction

Active vehicle stability control systems have played a major
role in reducing the number of road fatalities over the past few
decades. These systems assist the driver to control the vehicle in
harsh driving conditions, such as high-speed collision avoidance
maneuvers and slippery road conditions. In spite of these safety
systems, road fatalities continue to claim lives. Therefore, further
development of such safety enhancement systems is required.
Besides, new types of personal vehicles continue to gain popularity
in the market, such as hybrid and fully electric vehicles. This
highlights the importance of development of active safety systems
that are tailored for these particular types of vehicles.

Along with development of electric vehicles, development of
powerful computing hardware has led to increased popularity of
control algorithms that are computationally expensive, namely
Model Predictive Control (MPC). MPC has the advantage of being a
model-based control algorithm. Therefore, transferring the con-
troller from one vehicle to another can be done with minimum
changes in the controller parameters. In addition, in the MPC ap-
proach, the constraints on the actuator limits as well as system
states can be explicitly considered in the control design stage;
therefore, the control actions are calculated with the system
constraints considered, which results in a more accurate control
system. Several variations of MPC has been employed in vehicle
stability control applications. Given the nonlinear nature of vehicle

dynamics, using a nonlinear prediction model provides a more
accurate representation of the system. Some authors have used
nonlinear MPC (NLMPC) in their work. For instance, Borrelli, Fal-
cone, Keviczky, and Asgari (2005) studied active steering of au-
tonomous vehicle systems using Model Predictive Control with a
nonlinear bicycle model as the prediction model. Using NLMPC,
they tried to find optimal control actions for path tracking. They
evaluated the performance of their controller in a double lane
change maneuver with increasing entry speeds. They studied the
required size of the prediction horizon and control horizon ne-
cessary to stabilize the vehicle with different entry speeds. Fal-
cone, Tseng, Borrelli, Asgari, and Hrovat (2008) used model pre-
dictive control to perform path following via combined active
front steering and differential braking. They used a 10-DOF non-
linear vehicle model as well as a simple bicycle model for com-
parison. Performing computer simulations, they observed that the
braking and steering actions of the controller cooperate well to-
wards the objective of trajectory tracking. They also observed that
as the vehicle speed is increased beyond a certain threshold, the
controller using the simple bicycle model fails to stabilize the
vehicle. Similar technique has been used in (Canale, Fagiano &
Razza, 2010; Falcone, Borrelli, Asgari, Tseng, and Hrovat, 2008;
Palmieri, Falcone & Tseng, Glielmo, 2008).

Even though a nonlinear model gives better prediction accu-
racy in a wider range of vehicle operation, it results in a nonlinear
programming problem (NLP). NLPs are computationally expensive
to solve, thus not an attractive option for real-time implementa-
tion. An alternative to a nonlinear prediction model, is a hybrid
or mixed integer model. In this approach, the important
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nonlinearities in the system (such as tire saturation) are expressed
in terms of piece-wise affine (PWA) elements. For instance, Bor-
relli, Bemporad, Fodor, and Hrovat (2006) used a PWA function to
model the force developed in the tire contact patch in terms of the
coefficient of friction and slip. The limits of the engine torque and
engine torque gradient are expressed as the constraints of the
system. They designed a hybrid MPC (hMPC) controller to regulate
the engine torque so that the wheel slip remains in the target zone
where the traction force is maximal. Solving the optimal control
actions in this approach requires solving a mixed integer linear
programming (MILP) or quadratic programming (MIQP) problem.
A similar approach has been used in (Di Cairano, Tseng, Bernardini
& Bemporad, 2012; Giorgetti, Bemporad, Tseng & Hrovat, 2006).

Another approach that is frequently used is successive linear-
ization of a nonlinear model. This results in a linear prediction
model at each sample time. Based on the norms used in the ob-
jective function, finding the optimum control actions requires
solving a linear programming (LP) or a quadratic programming
(QP) problem, which is much easier than a nonlinear program-
ming or mixed integer programming problem. Many authors have
used this approach in vehicle stability control. Barbarisi, Palmieri,
Scala, and Glielmo (2009) addressed the problem of vehicle yaw
rate tracking and sideslip angle control using differential braking.
They used a double track model of the vehicle along with a Pacejka
tire model which was linearized to provide a linear prediction
model. Based on the calculated tire capacity and tire lateral forces,
the limits on braking forces is determined. A supervisory algo-
rithm uses the error in yaw rate and sideslip angle to determine
when the controller should be activated or deactivated. The con-
troller is tested in simulations with different cars and provides
satisfactory performance. A similar method is used in (Falcone,
Tufo, Borrelli, Asgari & Tseng, 2007; Turri, Carvalho, Tseng, Jo-
hansson & Borrelli, 2013; Beal, 2011; Jalaliyazdi, Khajepour, Chen &
Litkouhi, 2015). To improve the robustness of the controller to
uncertainties such as modeling uncertainties, some authors use
reachability analysis and invariant set theory (Blanchini and Miani,
2008; Raković and Barić, Morari). Palmieri, Barić et al. Palmieri,
Barić, Glielmo, and Borrelli (2012) used a set-based approach for
vehicle lateral stabilization based on active front steering and
differential brakes.

Controlling the tire slip ratio is an important part of the vehicle
stability control. If the slip ratio of a tire exceeds a certain
threshold, its force capacity in lateral direction is severely reduced.
This can lead to a significant understeer or oversteer during cor-
nering especially on low friction surfaces, which can not be easily
corrected by stability controllers. It is a common practice to as-
sume a separate tire slip control module exists that keeps the tire
slip ratio within the permissible range (see (Falcone, Borrelli et al.,
2008) for example). However, having separate slip control and
stability control modules means that the torque adjustments made

by the stability controller are altered by a separate module;
therefore, its optimality is compromised. Few authors have at-
tempted to design an integrated stability and traction control
systems.

Palmieri, Barbarisi, Scala, and Glielmo (2009) investigated in-
tegration of a model predictive stability control module with a slip
control system. The method of actuation was differential braking.
The desired braking forces are calculated in the stability controller
and then passed to a slip control module to generate the actual
barking forces. The feedback part in the slip control module is an
integral controller that tries to reduce the error between the de-
sired slip ratio and the actual slip ratio to keep the longitudinal slip
ratio in a stable range. However, even in this structure, the slip
control and stability control modules are separate entities and not
fully integrated. A better integration of the vehicle and wheel
dynamics is done by Zhou and Liu, (2009). The state vector of their
prediction model involves the yaw rate and sideslip angle of the
vehicle as well as the slip ratio of all four tires. They evaluated the
performance of their MPC controller using computer simulations.
It was observed that careful tuning of controller parameters is
necessary to achieve good performance and avoid wheel lock.

The main contribution of this paper is designing an integrated
vehicle stability and slip control system using model predictive
control. The prediction model involves a double track vehicle
model as well as the wheel dynamics, thus the integration be-
tween stability control and slip control modules is realized. In this
formulation, no separate slip control module is required as the
integrated controller maintains the vehicle stability and tire grip at
the same time. Another contribution of the paper is that it can be
quickly reconfigured to work with different driveline configura-
tions, including front wheel drive (FWD), rear wheel drive (RWD)
as well as four wheel drive (4WD). Furthermore, the designed
controller can work with vehicles equipped with differential
barking in addition to torque vectoring.

In this paper, first the formulation of the integrated MPC con-
troller is presented. Then, the performance of the designed con-
troller is illustrated with computer simulations using Simulink/
CarSim. The controller is also implemented in two electric Equinox
vehicles: a four wheel drive (4WD) used for torque vectoring and a
rear wheel drive (RWD) equipped with differential braking. The
performance of the controller is investigated in various maneuvers
and road conditions.

2. MPC controller design

The integrated model predictive controller is designed in this
section. First, the prediction model involving vehicle directional
dynamics and wheel dynamics is introduced. Then, the desired
system response for the vehicle and wheels is defined. Next, the

Nomenclature

MPC Model Predictive Control
NLMPC Nonlinear Model Predictive Control
LTV MPC Linear Time Varying Model Predictive Control
hMPC Hybrid Model Predictive Control
LP Linear Programming
QP Quadratic Programming
NLP Nonlinear Programming
AIT Acceleration In Turn
FWD Front Wheel Drive
RWD Rear Wheel Drive

4WD Four Wheel Drive
C.G. Center of Gravity
Reff Effective wheel radius
Li Distance from C.G. to front (i¼F) or rear (i¼R) axle
L Wheel base
w Track width
u Vehicle C.G. forward velocity
v Vehicle C.G. lateral velocity
r Vehicle yaw rate
g Gravitational constant (9.81 m/s2)
αij Slip angle of tire ij
kus Desired understeer gradient of the vehicle
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