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a b s t r a c t

This paper proposes a fuzzy controller for trajectory tracking with unicycle-like mobile robots. Such
controller uses two Takagi–Sugeno (TS) fuzzy blocks to generate its gains. The controller is able to limit
the velocity and control signals of the robot, and to reduce the errors arising from its dynamics as well.
The stability of the developed controller is proven, using the theory of Lyapunov. Experimental results
show that the use of the proposed controller is attractive in comparison with the use of a controller with
fixed saturation function.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This work proposes a new approach to limit the control signals
during a trajectory tracking with unicycle-like mobile robots.
In the literature it is common to find works that use explicit
saturation functions such as the hyperbolic tangent to limit control
signals (Andaluz, Roberti, Toibero, & Carelli, 2012; Martins, Celeste,
Carelli, Sarcinelli-Filho, & Bastos-Filho, 2008). In this work, how-
ever, fuzzy rules are adopted to achieve such limitation while
keeping an efficient trajectory tracking controller operation.

The fuzzy control emerged in the 70s as a heuristic method
based on the knowledge of the designer about the process to be
controlled. Such method started being adopted after the publication
of the works of Zadeh (1973) and Mamdani (1974). This methodol-
ogy has the advantage of controlling a plant without an explicit
knowledge of its dynamics. However, to prove the stability of the
closed-loop control system using these controllers is a difficult task.
In the field of mobile robots control, for instance, several works
have used the heuristic methodology to design fuzzy controllers,
without studying the system stability (Antonelli, Chiaverini, &
Fusco, 2007; Deist & Fourie, 1993; Hung & Chung, 2006; Lakehal,
Amirat, & Pontnau, 1995; Susnea, Filipescu, Vasiliu, & Filipescu,
2008). This means that there is no theoretical guarantee that the
task being performed will be accomplished accordingly.

Due to the need of a formal proof of stability for the control
system, fuzzy controllers have obtained a new focus with the Takagi–
Sugeno (TS) fuzzy controllers (Takagi & Sugeno, 1985). Tanaka and
Sugeno (1992) showed that the TS fuzzy controllers can be designed
rigorously, following methodologies that can be reproduced consis-
tently, guaranteeing the system stability and using several perfor-
mance criteria. The technique most commonly adopted for the
design of controllers represented as a TS fuzzy model is the Parallel
Distributed Compensation (PDC) (Wang, Tanaka, & Griffin, 1996).
This technique has been used successfully to design controllers for
trajectory tracking with mobile robots (Guechi, Lauber, Dambrine,
Klancar, & Blazic, 2010; Guechi, Abellard, & Franceschi, 2012) and to
solve the backing control problem of a mobile robot with multiple
trailers (Tanaka, Kosaki, & Wang, 1998). Nevertheless, it is important
to emphasize that although the PDC technique is based on fuzzy
models, this design methodology does not use the knowledge of the
designer about the process.

The controller here proposed uses the control structure reported
in Resende, Espinosa, Bravo, Sarcinelli-Filho, and Bastos-Filho (2011),
combining the heuristic knowledge of the problem, the sector non-
linearity approach (Tanaka & Wang, 2001) and the inverse kinematic
of the mobile platform. The use of the sector nonlinearity allows
designing a fuzzy controller with a quite reduced number of rules
and a quite low complexity, making it suitable for implementation
in the low-profile processors generally available onboard mobile
platforms.

Through the application of the inverse kinematic of the mobile
platform, it was possible to design a TS fuzzy controller guarantee-
ing the stability of the closed loop system, but without using the
PDC technique. More than this, it was possible to use the heuristic
knowledge to reduce position errors caused by the difference
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between the desired values of linear and angular velocities
(system inputs) and the current velocity values assumed by the
mobile platform.

Three experiments run using a unicycle-like mobile robot are
reported here, which have shown that the proposed controller
performs better than the similar controller proposed by Martins
et al. (2008). It is worth mentioning that the proposed controller
can be adapted to other mobile platforms, demanding just the
knowledge of its inverse kinematic.

To develop and validate the proposed controller, the paper is
hereinafter organized in four sections. Section 2 presents the kine-
matic model of the unicycle-like mobile robot, while Section 3 details
the proposed nonlinear controller with variable gains and discusses
the system stability. In the sequel, Section 4 shows the experimental
results and performance comparisons between the two aforemen-
tioned controllers. Finally, Section 5 highlights some conclusions.

2. The kinematic model adopted

Traditionally, in the motion control of unicycle-like mobile
robots, the robot is considered as a point located at the middle
of the virtual axle. In this work, however, the point that should
follow a predetermined trajectory is located in front of the virtual
axle (point d of Fig. 1). Such point is hereinafter named as the point
of interest.

From Fig. 1, the velocity of the point of interest with respect to
the inertial frame {I} is given by
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where the linear velocity u and the angular velocity ω are the
control inputs of the robot, _x and _y are, respectively, the velocity of
the point of interest in the X and Y directions of the inertial frame,
a40 represents the distance between the point of interest and the
center of the virtual axle, and ψ is the orientation of the robot,
which is given by the solution of _ψ ¼ ω.

The appropriate values of u and ω to impose desired velocities _x
and _y to the point of interest are determined by the inverse
kinematics (Martins et al., 2008)
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where C−1 is the inverse kinematics matrix. Unlike the middle
point of the virtual axle, the point of interest d does not have any
velocity restriction in the robot workspace (such point can move
in any direction).

3. The nonlinear trajectory tracking controller with fuzzy
gains

3.1. The control law

During the trajectory tracking, the point of interest of the robot
shall follow a programmed trajectory defined by an equation like
pðtÞ ¼ ðxDðtÞ; yDðtÞÞ, where ðxD; yDÞ is the point to be followed and
t≥0 is the time variable. To comply with this control objective, this
work proposes the control law
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where ur and ωr are the controller outputs which are, respectively,
the linear and angular reference velocities; _xD and _yD are,
respectively, the velocity of the programmed trajectory at the

point ðxD; yDÞ in the X and Y directions of the inertial frame; and νx
and νy are the outputs of two “fuzzy velocity compensators” (FVC).

According to Fig. 2, the idea of the proposed controller is that
once the point of interest d coincides with the desired point
ðxD; yDÞ at the trajectory, the reference velocities _xr and _yr are kept
equal to the velocities of the reference trajectory, that is _xr ¼ _xD,
_yr ¼ _yD, νx ¼ 0 and νy ¼ 0. Upon the occurrence of position errors ~x
and ~y, the fuzzy controller generates compensation terms for the
velocities (νx and νy), until the point of interest d coincides with
the desired point ðxD; yDÞ at the trajectory again. Notice that the
matrix C−1 is responsible for transforming _xr and _yr in ur and ωr .

The premise variables of the fuzzy velocity compensator X
(FVCX) are j _xDj and j ~xj, respectively the magnitude of the velocity
of the programmed trajectory and the magnitude of the position
error both in the X direction. In turn, the premise variables of the
fuzzy velocity compensator Y (FVCY ) are j _yDj and j ~yj, respectively
the magnitude of the velocity of the programmed trajectory and
the magnitude of the position error both in the Y direction.

The premise variables j ~xj and j ~yj are divided into three fuzzy
sets: small error (S), medium error (M) and large error (B). The
membership function of the small error fuzzy set is given by
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while the membership function of the medium error fuzzy set is
given by
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and the membership function of the large error fuzzy set is given
by

f Bð ~e
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where j ~ej represents the magnitude of the position error (j ~xj or
j ~yj). Fig. 3 presents a sketch of such membership functions.

The premise variables j _xDj and j _yDj are divided into two fuzzy
sets: low velocity (L) and high velocity (H). According to Fig. 4,
the membership functions of such premise variables are defined

Fig. 1. The unicycle-like mobile robot and its kinematic parameters.
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