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a b s t r a c t

We investigate the possibility of stabilizing a Rayleigh–Taylor experiment by imposing a small upward
temperature gradient. We find that if the two fluids have equal thermal conductivities nothing can be
accomplished. If either thermal conductivity is much greater than the other, the small gradient is always
stabilizing. If the thermal conductivities are of the same order of magnitude the small gradient can be
stabilizing or destabilizing depending on the thermal expansion coefficients.

We have used a Darcy model so that we can derive formulas and present a physical explanation of what
we find.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the ordinary Rayleigh–Taylor problem, cf., Chandrasekhar [2],
we have two fluids of uniform density, a heavy fluid lying above a
light fluid. The configuration is gravitationally unstable. A displace-
ment of the surface will lead to its collapse unless the stabilizing
effect of surface tension is taken into account. Then the configura-
tion becomes stable to small perturbations of short wavelength,
remaining unstable to perturbations of long wavelength. The
critical wave number, k, is given by

k2 ¼ Dqg
c

where Dq denotes the density difference across the surface and c
denotes its surface tension. Thus heavy over light can be maintained
in a small diameter container, but not in a large diameter container.

It may be that we wish to observe the instability, possibly to
determine the pattern in which the surface breaks. Thus we would
like to stabilize the surface, set the experiment up in a large diam-
eter container and then remove the stabilizing forces whereupon
the surface becomes unstable. And we might imagine that a small
temperature gradient would do the job. Our aim is to do this by
heating from above. Alexseev and Oron [1] stabilize the surface
by Marangoni convection, Carlés et al. [3] impose a magnetic field
and Ratafia [5] accelerates the system.

We impose a temperature gradient on the system, hot above
cold, and it might be thought that this would always work. How-
ever there is a surprise, hot above cold is not always stabilizing.

To indicate why a positive temperature gradient might be
thought to be stabilizing, we present some sketches. The sketch
in Fig. 1, drawn at the no-heating critical value of k2, illustrates a
crest that ought to rise and trough that ought to fall if were it
not for the stabilizing effect of surface tension.

The sketch in Fig. 2 indicates the effect of a positive temperature
gradient imposed on the fluids, cold at the bottom, hot at the top,
assuming the same densities obtain as before at the surface.

The buoyancy causing the crest to rise and the trough to fall is
less than before, the wave number is the same, so this ought to be a
stable picture. And we should conclude that a positive temperature
gradient is stabilizing, i.e., that the neutral value of k2 should
decrease on heating.

There is, however, more going on than this simple figure would
suggest. For example, offsetting the stabilizing effect of the vertical
temperature gradient, is heat conduction from left to right, increas-
ing the densities in the trough, decreasing the densities in the crest,
thereby strengthening the adverse buoyancy.

Now these are static pictures. However, at the above no-heating
critical point there will be flow if we introduce heating and the
flow will affect the pressure difference across the surface; how it
does this depends on the thermal conductivities and the coeffi-
cients of thermal expansion and this effect may be either stabiliz-
ing or destabilizing.

We aim to find out when heating from above is stabilizing and
when it is not. We set our problem in a porous solid and use
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Darcy’s law to obtain the velocity of the fluid. We do this for alge-
braic simplicity and to eliminate the effect of surface tension
gradient-driven convection. Taking the interface to be of infinite
horizontal extent is no limitation in a Darcy fluid model. The side
walls simply limit the allowable wave numbers. The greatest loss
in using a Darcy model is the loss of viscous coupling. Rasenat
et al. [4] account for this via a Navier–Stokes model but, as they
say, no formulas can be obtained.

We get our greatest simplification upon observing that what is
most important are the pressure and temperature gradients near
the surface and not so much what is going on far away. Hence
we put the upper and lower boundaries infinitely far away.

Our aim then is to input a small temperature gradient and
derive its effect on the critical wave number.

2. The non-linear equations and the base solution

Assuming that only the densities of the fluids depend on
temperature and that this dependence is not strong, we write

l
K
~v ¼ �rp� qðTÞg~k ð1Þ

and

r �~v ¼ 0 ð2Þ

in both phases, where the superscript H will distinguish the lighter
phase variables.

Denoting the reference density by q0, where q0 is the density of
the heavy fluid in the no-heating case, we have

dq
dT
¼ �aq0 ð3Þ

and thus Eqs. (1)–(3) imply

r2vz ¼
K
l

aq0g
@2T
@x2 ð4Þ

and

@2p
@x2 ¼

l
K
@vz

@z
ð5Þ

where K denotes the permeability of the solid and a denotes the
thermal expansion coefficient of the fluid. The temperature of the
fluid satisfies

@T
@t
þ~v � rT ¼ jr2T ð6Þ

where j denotes the thermal diffusivity of the fluid.
We have no side walls, no top and no bottom walls. Our pertur-

bation variables are assumed to be bounded far from the surface
separating the two phases.

The surface is denoted z ¼ Zðx; tÞ and across this surface we
have

vz � vxZx ¼ Zt ¼ vH

z � vH

x Zx ð7Þ

T ¼ TH ð8Þ

k~n � rT ¼ kH~n � rTH ð9Þ

and

p� pH ¼ c2H ð10Þ

where k denotes the thermal conductivity and where the fluids are
assumed to be immiscible.

The base solution, due to imposing a small temperature gradi-
ent on our two-phase system, is

~v0 ¼~0 ¼ ~vH

0 ð11Þ

dp0

dz
¼ �qðT0Þg;

dpH

0

dz
¼ �qHðT0Þg ð12Þ

and

k
dT0

dz
¼ kH dTH

0

dz
ð13Þ

where the base surface, defining the reference fluid domains, lies at
z ¼ Z0 ¼ 0.

The base densities on either side of the surface are denoted q0

and qH

0 .

3. The perturbation problem

Imposing a small disturbance on the base solution in the form
cos kx, denoting the perturbation variables by the subscript 1 and
seeking the critical value of the wave number, k, we write

vz1 ¼ bv z1ðzÞ cos kx

T1 ¼ bT 1ðzÞ cos kx

p1 ¼ bp1ðzÞ cos kx

and

Z1 ¼ bZ1 cos kx

and we have, using Eqs. (4)–(6), for z P 0,

d2

dz2 � k2

 !bv z1 ¼ �Rk2bT 1 ð14Þ

bv z1
dT0

dz
¼ j

d2

dz2 � k2

 !bT 1 ð15Þ
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Fig. 1. A displacement at the no-heating critical point.
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Fig. 2. A displacement at the no-heating critical point in the presence of heating.
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