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a b s t r a c t

A novel approach to characterise the model prediction errors using a Gaussian mixture model is

proposed. The motivation for this work lies behind many data models that are developed through

prediction error minimisation with the assumption of a normal noise distribution. When the noise is

non-normal, which may often be the case in complicated data modelling scenarios, the model

prediction errors may contain rich information, which can be further exploited for model refinement

and improvement. The key contents presented in this paper include: choosing the relevant variables to

form the error data, optimising the number of Gaussian components required for the error data

modelling, and fitting the Gaussian mixture parameters using an expectation-maximisation algorithm.

Application of the proposed method for further model improvement, within the framework of hybrid

deterministic/stochastic modelling, is also discussed. Preliminary results on the real industrial Charpy

impact energy data for heat-treated steels show its effectiveness for model error characterisation, and

the potential for model performance improvement in terms of prediction accuracy as well as providing

accurate prediction confidence intervals.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Data-driven modelling has gathered much pace and popularity
due to the rapid growth in computing power and the availability
of extensive data and various information in modern industrial
processes. It has been developed with contributions from artificial
intelligence, data mining, knowledge discovery in databases,
computational intelligence, machine learning, intelligent data
analysis, soft computing, and pattern recognition. There are often
overlaps among those different terminologies due to the nature of
parallel development related to data modelling in different dis-
ciplines. Common data modelling approaches include multivariate
regression, artificial neural networks, and adaptive neuron-fuzzy
systems, to only mention a few here (Abbod, Zhu, Linkens, Sellars,
& Mahfouf, 2006; Mahfouf, Jamei, Linkens, & Tenner, 2008). While
in statistical regression the regressor structure and the type of
input–output function need to be predefined, other intelligent
approaches, such as artificial neural network, need little pre-
assumptions and are more flexible due to their capacity of being
a universal approximator. The modelling strategies and algorithms
have also evolved towards dealing with nonlinear and high-
dimensional input/output mappings. However, many of the data

models are derived based on some type of error minimisation,
under the explicit or implicit assumption that the modelling errors
follow a normal distribution. In reality, the process to be modelled
is often very complex, suffering from different random distur-
bances, various measurement scatters, and non-measurable (hid-
den) inputs. Hence, the assumption of a normal error distribution
may not be valid, leading to sub-optimal model predictions.

In this paper, a new modelling strategy aimed at exploiting the
rich information hidden behind the prediction error data using a
Gaussian mixture model (GMM) is proposed. GMM has found
extensive applications in speaker verification, colour image detec-
tion, and other similar pattern classification and cluster analysis
problems (He, Pan, & Lin, 2006; Huang & Chau, 2008; Kinnunen,
Saastamoinen, Hautamäki, Vinni, & Fränti, 2009), due to its
advantage of well-known properties, analytically tractability,
and the existence of elegant expectation maximisation algo-
rithms. Chen, Morris, and Martin (2006) investigated infinite
GMM for probability density estimation and its application in
statistical process monitoring. However, the application of GMM
for error data characterisation has, to the authors’ best knowl-
edge, not yet been exploited. We believe that this is a promising
research topic, as the GMM structure has the ability to approx-
imate any reasonably behaved continuous probability density
function (pdf) provided that enough Gaussian components are
included. Hence, it can be employed to model complex non-
normal model error distribution. The main motivation here is to
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develop a GMM for non-normal model error characterisation, and
to use the GMM to further improve the original data model in a
complimentary way through model fusion. Alternatively, the
error GMM can be employed to pursue data model validation
and redevelopment, through hypothesis testing or data model
refinement guided by the information extracted from the
error GMM.

The concept of using prediction errors (also known as resi-
duals) for model refinement is not new. Cooks and Weisberg
(1982) had looked the role residuals can play in regression, while
Oliveira and Pedrycz (2007) conducted analysis on the residuals
to validate the assumptions of normality and homoscedasticity in
their fuzzy clustering. Mauricio (2008) discussed the computing
and use of residuals in time serials modelling, with focus on using
residuals to reduce model inaccuracies. The majority of residual
analysis research aims at hypothesis testing in order to confirm or
reject the initial assumptions for modelling, and if rejected how
revised assumptions are to be postulated for progressive model
development. Some statistical data models are developed based
on the relaxed i.i.d assumption of the observed data without
imposing the restriction of normal distributions (Vapnik, 1998),
and approaches to validate the assumptions based on the concept
of model complexity and data nature (Kantz and Schreiber, 2003).
The error data have been exploited in quite a different way in this
paper, with the random noises involved in the modelling being
viewed as complex, neither a normal distribution nor i.i.d. The
residuals, together with other relevant input variables, are used to
elicit a probabilistic model in the form of a GMM, so that the
complicated probabilistic behaviour of the prediction error can be
exploited in order to improve the data model through hybrid
deterministic/stochastic modelling. As this type of modelling
philosophy is relatively new, concepts, issues and rationales
relating to the error data modelling using GMM, as well as how
such an error GMM can be harmonised with the original data
model, are also being investigated. The remainder of the paper is
organised as follows: Section 2 introduces a typical data model-
ling scenario concerning the input–output relationship, together
with an example of artificial neural network data modelling using
a synthetic data set. Section 3 outlines the error data character-
isation based on a GMM framework and situations where such an
error probabilistic modelling should be most beneficial. Key
techniques and algorithms for the error GMM are then illustrated
using the same synthetic data introduced in Section 2, together
with some general guidance for error GMM implementation and
discussions. In Section 4, a case study of the error GMM on the
Charpy impact energy data extracted from an industrial database
containing heat-treated steels is presented. The resultant error
GMM is then exploited to improve the associated neural network
data model for Charpy impact energy prediction, with output
correction based on the conditional error means. In addition,
reliable confidence intervals for the model predictions can be
calculated based on the conditional error standard deviations
derived from the error GMM. Section 5 concludes the paper with
discussions, remarks, and suggestions for future research.

2. Data modelling using neural network

It is assumed that no sufficient physical insight of the process is
available, so a physical based model or first principle model
cannot be formulated. In data driven modelling, the first task
should involve the choice of a model form (often belongs to
families that are known to have good flexibility and have been
‘‘successful in the past’’) based on the nature of the available
model data. Common data-driven model paradigms include, but
not limited to, statistical regression, neural networks and adaptive

fuzzy systems (Bishop, 2006; Chen & Linkens, 2001). Recently,
data-driven models have been constructed through Genetic Pro-
gramming and evolutionary algorithm based approaches
(Brezocnik, Buchmeister, & Gusel, 2011; Kovacic, 2009), and are
increasingly becoming a competitor of artificial neural networks
as far as input–output mapping is concerned. The primary objec-
tive of the data modelling here is to provide good predictions of
the outputs for new inputs, rather than to find the true input–
output relationship, which is often impossible for complicated
processes.

The general form of the data model can be expressed in the
following mathematical form:

y¼ gðx,hÞþxAR

x¼ ½x1,x2. . .xn�
T ARn

h¼ ½y1,y2. . .yl�
T ARl

ð1Þ

where x is a n-dimensional input vector, y is the output variable,
g(x,h) is a nonlinear function with a l-dimensional parameter
vector h, x is the model error, which accounts for all random
noises and un-modelled errors on the output, and the superscript
T represents the transpose of the corresponding vector or matrix.

Eq. (1) represents a typical nonlinear static process, but can be
generalised for dynamic processes by augmenting the input
vector with the past inputs and past outputs. It can also be
extend to multiple-inputs multiple-outputs (MIMO) systems by
introducing a vector function and a vector output to replace the
corresponding scalar components. It can even cope with time-
varying system, via the mechanism of defining the parameter
vector h being a function of time t. Of course, the corresponding
time-varying modelling techniques, such as time-recession win-
dow, need to be adopted and they are beyond the scope of
this paper.

The main source of information for data-driven modelling is
primarily from the available input–output data, although knowl-
edge about the system to be modelled is beneficial and should be
used if available in choosing the model paradigm and model
structure. The available model data can be arranged into input
matrix X and output vector Y, as given by the following equation:

X ¼ ½xð1Þ,xð2Þ,. . .,xðNÞ�T ¼

x1ð1Þ x2ð1Þ . . . xnð1Þ

x1ð2Þ x2ð2Þ . . . xnð2Þ

. . . . . . . . . . . .

x1ðNÞ x2ðNÞ . . . xnðNÞ

2
66664

3
77775

Y ¼ ½yð1Þ,yð2Þ,. . .,yðNÞ�T ð2Þ

where N is the total number of process data available for
modelling. The input matrix X is arranged in such a way that
each row represents a record consisting of all the input variables
at a specific measurement, while the columns in X represent the
collection of measurements for the corresponding inputs.

The central task in data-drive modelling is to identify the
model parameter vector h from the available process data (X,Y)
under the selected model framework. Usually this is achieved by
some kind of optimisation for a specified performance criterion. A
commonly used performance criterion is the root mean square
error (RMSE), defined by

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k ¼ 1

ððyðkÞ�_yðkÞÞ2=N

vuut ð3Þ

where _yðkÞ ¼ gðxðkÞ,
_
hÞ is the output prediction of the model

parameterised by
_
h. The role of the data model, in the perspective

of error data probabilistic characterisation, is to generate the
prediction errors for the available model data. Any model frame-
work, be it multivariate regression, neural network (Bishop, 1995;
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