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a b s t r a c t

In this study a novel total flux normalized correlation equation is proposed for predicting single-collector
efficiency under a broad range of parameters. The correlation equation does not exploit the additivity
approach introduced by Yao et al. (1971), but includes mixed terms that account for the mutual interac-
tion of concomitant transport mechanisms (i.e., advection, gravity and Brownian motion) and of finite
size of the particles (steric effect). The correlation equation is based on a combination of Eulerian and
Lagrangian simulations performed, under Smoluchowski–Levich conditions, in a geometry which consists
of a sphere enveloped by a cylindrical control volume. The normalization of the deposited flux is per-
formed accounting for all of the particles entering into the control volume through all transport mecha-
nisms (not just the upstream convective flux as conventionally done) to provide efficiency values lower
than one over a wide range of parameters. In order to guarantee the independence of each term, the cor-
relation equation is derived through a rigorous hierarchical parameter estimation process, accounting for
single and mutual interacting transport mechanisms. The correlation equation, valid both for point and
finite-size particles, is extended to include porosity dependency and it is compared with previous models.
Reduced forms are proposed by elimination of the less relevant terms.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Particle transport and deposition in saturated porous media are
important processes occurring in natural and engineered systems.
Colloidal filtration is a phenomenon of pivotal importance in
numerous fields, including the propagation of contaminants and
of microorganisms in aquifer systems [1–8], and the clogging of

depth filters and wells [9,10]. Other applications involving particle
transport and deposition are: the design of remediation interven-
tions by using nanoparticles as reagents [11–15], the delivery of
agents for contrast [16] or for thermo-radiotherapy in medicine
[17,18], enhanced oil recovery or imaging in reservoir engineering
[19] and several others [20,21].

In order to master and control all these applications, a deep
understanding of the phenomena involved in particle transport
and deposition in saturated porous media is necessary. In this con-
text porous media are described as an ensemble of ‘‘collectors’’ or
grains on which the transported particles are collected or
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deposited. In turn, deposition of particles from a suspension to a
collector surface may be viewed as a two-step process: (1) the
transport of the particles from the bulk of the suspension to the
proximity of the collector and (2) the particle adhesion to the col-
lector/grain surface, which depends on the nature of particle-col-
lector interactions [22]. The first step is usually quantified by g0,
the single collector contact efficiency, that expresses the number
of particles that reach the collector divided by the advective rate
entering through the projection of the collector (Eq. (3)); the sec-
ond step is commonly quantified by the attachment efficiency a,
which is the fraction of the particles coming into contact with
the collector that actually attaches onto it. The product of these
two values gives, as a result, the single collector removal efficiency
g, which accounts for both the transport and attachment steps
[23,24].

According to previous studies, the mechanisms responsible for
particle transport are mainly three: Brownian motion, gravity
and interception [25] (respectively the blue trajectory AD in
Fig. 1b, the magenta trajectory G in Fig. 1a and the red trajectory
AS in Fig. 1a). Taking advantage of the additivity concept, Yao
et al. [25] firstly proposed in 1971 a correlation equation for the
single collector contact efficiency, that is the summation of three
partial efficiencies due to Brownian motion gD, due to gravity gG,
and due to interception gI. This approach, that neglects the full
set of mutual interactions between the different transport mecha-
nisms, reads as follows:

g0 Yao ¼ gD þ gG þ gI ¼ 4:04N�2=3
Pe þ NG þ

3
2

N2
R ð1Þ

where NPe is the Peclet number, NG is the gravity number and NR

was defined as the interception number, but in this study for the
sake of generalization it will be referred to as steric number or
aspect ratio. A detailed definition of these dimensionless numbers
is reported in Table 1. It is important to remind here that the addi-
tivity is clearly a simplification hypothesis, as the different mecha-
nisms, which are inherently non-linear, operate jointly and
therefore neglecting their interactions may lead to large errors.

The first term at the right side of Eq. (1) was derived analytically
at high Peclet numbers (NPe > 70) from the results of Levich [26],

and takes into account the mutual influence of advection and
Brownian motion (or Brownian diffusion). The gravity and inter-
ception terms, were analytically calculated by Yao [27], and
account respectively for the deposition rate due to gravity and to
advection (in this last case for finite-size particles).

Many other more sophisticated correlation equations based on
different geometries, such as Happel’s and Hemisphere-in-cell,
derived by using different numerical approaches (i.e., Lagrangian
versus Eulerian) and including more interaction mechanisms (i.e.,
Van der Waals forces and others) were proposed afterward. Most
of them were fully or partially derived starting from the above-
mentioned additivity assumption.

Rajagopalan and Tien [28] (RT in the figures) extended heuristi-
cally the correlation equation presented by Yao et al. [25] by per-
forming a numerical trajectory analysis of non-Brownian
particles in the presence of the Van der Waals force and of the
hydrodynamic retardation in the Happel’s sphere-in-cell model
[29]. In 2004 Tufenkji and Elimelech [30] (TE) developed a correla-
tion equation by performing Eulerian simulations in the Happel’s
geometry and accounting for the simultaneous presence of the
transport mechanisms and the effects of the Van der Waals force
and of the hydrodynamic retardation [31]. In 2005 Nelson and
Ginn [32] adopted a Lagrangian approach in the Happel’s geome-
try, simulating the simultaneous presence of all the forces acting
on the particles (i.e., fluid drag, gravity, Van der Waals, electric-
double layer, Brownian diffusion and hydrodynamic retardation).
Ma et al. [33] (MPFJ) introduced the hemispheres-in-cell model
geometry which allows the effect of grain-to-grain contact points
to be taken into account. Recently Boccardo et al. [34] solved the
full Navier Stokes flow field by exploiting a Eulerian approach
and then proposing an extension of the correlation equation for
higher Reynolds numbers. As already discussed, all the above men-
tioned models are based on the simplification hypothesis of addi-
tivity of the three partial efficiencies (gD, gG and gI), as reported
in Eq. (1), accounting for two single acting transport mechanisms
(gravity and advection) and one mixed term due to the interaction
of Brownian diffusion and advection.

As already pointed out by Song end Elimelech [35], Nelson and
Ginn [31] and Ma et al. [36], the other main drawback of most of

Fig. 1. Main mechanisms of particle transport and deposition. (a) Single transport mechanism: diffusion D (blue line), advection A (black line), gravity G (magenta line),
diffusion and steric effect DS (orange line), advection and steric effect AS (red line), gravity and steric effect GS (green line); (b) Two active transport mechanisms: diffusion
and advection AD (blue line), gravity and diffusion DG (black line), advection and gravity AG (magenta line), diffusion–advection and steric effect ADS (red line), gravity–
diffusion and steric effect DGS (orange line), advection–gravity and steric effect AGS (green line); (c) Three transport mechanisms acting together: advection–diffusion and
gravity ADG (blue line), advection–diffusion–gravity and steric effect ADGS (red line). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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