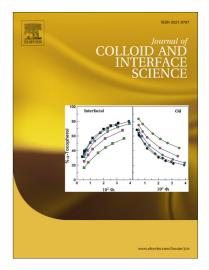
Accepted Manuscript

Simulation of Chaotic Electrokinetic Transport: Performance of Commercial Software versus Custom-built Direct Numerical Simulation Codes

Elif Karatay, Clara L. Druzgalski, Ali Mani


PII: S0021-9797(14)01051-0

DOI: http://dx.doi.org/10.1016/j.jcis.2014.12.081

Reference: YJCIS 20124

To appear in: Journal of Colloid and Interface Science

Received Date: 27 October 2014 Accepted Date: 23 December 2014

Please cite this article as: E. Karatay, C.L. Druzgalski, A. Mani, Simulation of Chaotic Electrokinetic Transport: Performance of Commercial Software versus Custom-built Direct Numerical Simulation Codes, *Journal of Colloid and Interface Science* (2015), doi: http://dx.doi.org/10.1016/j.jcis.2014.12.081

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Simulation of Chaotic Electrokinetic Transport: Performance of Commercial Software versus Custom-built Direct Numerical Simulation Codes

Elif Karatay, Clara L. Druzgalski, Ali Mani

Department of Mechanical Engineering, StanfordUniversity, Stanford, California 94305, USA and Center for Turbulence Research, Stanford University, Stanford, California 94305, USA

Abstract

Many microfluidic and electrochemical applications involve chaotic transport phenomena that arise due to instabilities stemming from coupling of hydrodynamics with ion transport and electrostatic forces. Recent investigations have revealed the contribution of a wide range of spatio-temporal scales in such electro-chaotic systems similar to those observed in turbulent flows. Given that these scales can span several orders of magnitude, significant numerical resolution is needed for accurate prediction of these phenomena. The objective of this work is to assess accuracy and efficiency of commercial software for prediction of such phenomena. We have considered the electroconvective flow induced by concentration polarization near an ion selective surface as a model problem representing chaotic electrokinetic phenomena. We present detailed comparison of the performance of a general-purpose commercial computational fluid dynamics (CFD) and transport solver against a custom-built direct numerical simulation code that has been tailored to the specific physics of unsteady electrokinetic flows. We present detailed statistics including velocity and ion concentration spectra over a wide range of frequencies as well as time-averaged statistics and computational time required for each simulation. Our results indicate that while accuracy can be guaranteed with proper mesh resolution and avoiding numerical dissipation, commercial solvers are generally at least an order of magnitude slower than custom-built direct numerical simulation codes.

© 2014 Published by Elsevier Ltd.

Keywords: Concentration-Polarization, Overlimiting current, Electroosmotic instability, Comsol, Direct numerical simulation

Download English Version:

https://daneshyari.com/en/article/6997106

Download Persian Version:

https://daneshyari.com/article/6997106

<u>Daneshyari.com</u>