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a b s t r a c t

The optimal trajectory planning problem for multiple trains under fixed block signaling systems and
moving block signaling systems is considered. Two approaches are proposed to solve this optimal control
problem for multiple trains: the greedy approach and the simultaneous approach. In each solution
approach, the trajectory planning problem is transformed into a mixed integer linear programming
(MILP) problem. In particular, the objective function considered is the energy consumption of trains and
the nonlinear train model is approximated by a piece-wise affine model. The varying line resistance,
variable speed restrictions, and maximum traction force, etc. are also included in the problem definition.
In addition, the constraints caused by the leading train in a fixed or moving block signaling system are
first discretized and then transformed into linear constraints using piecewise affine approximations
resulting in an MILP problem. Simulation results comparing the greedy MILP approach with the simul-
taneous MILP approach show that the simultaneous MILP approach yields a better control performance
but requires a higher computation time. Moreover, the performance of the proposed greedy and the
proposed simultaneous MILP approach is also compared with that of the greedy and the simultaneous
pseudospectral method, where the pseudospectral method is a state-of-the-art method for solving
optimal control problems. The results show that the energy consumption and the end time violations of
the greedy MILP approach are slightly larger than those of the greedy pseudospectral method, but the
computation time is one to two orders of magnitude smaller. The same trend holds for the simultaneous
MILP approach and the simultaneous pseudospectral method.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, the energy efficiency of transportation systems is
becoming more and more important because of the rising energy
prices and environmental concerns. Rail traffic plays a significant
role for the sustainability for transportation systems, since it can
provide safe, fast, punctual, and comfortable services (Peng, 2008).
The reduction of energy consumption is one of the key objectives
of railway systems because energy consumption is one of the
major expenses in operational cost, which is about 13–16% of
the annual operation and maintenance cost of railway systems
in China (Ding, Bai, Liu, & Mao, 2009). Therefore, even a small
improvement in energy saving is attractive to the railway opera-
tors since it can save a large amount of money. Some driver

assistance systems have been developed to assist drivers to drive
the train optimally, such as FreightMiser (Howlett & Pudney, 1995),
Metromiser (Howlett & Pudney, 1995), and driving style manager
(Franke, Meyer, & Terwiesch, 2002). With the development of
modern railway systems, an automatic train operation system
plays a key role in ensuring accurate stopping, operation punctu-
ality, energy saving, and riding comfort (Peng, 2008). The railway
control center or automatic train operation systems are respon-
sible for solving the trajectory planning problems based on the
information collected by train monitoring systems, such as line
resistance, speed limits, maximum traction and braking forces.

In the literature, the research on the optimal control of train
operations began in the 1960s and is aimed at solving the
trajectory planning problem for a train running from one station
to another. Since it has significant effects for energy saving,
punctuality, etc., various approaches were proposed for the tra-
jectory planning problem. These approaches can be grouped
into two main categories: analytical solutions and numerical
optimization. For analytical solutions, the maximum principle
is applied and it results in four optimal regimes (i.e., maximum
traction, cruising, coasting, and maximum braking) (Howlett,
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2000; Howlett, Milroy, & Pudney, 1994; Khmelnitsky, 2000; Liu &
Golovicher, 2003). It is difficult to obtain the analytical solution if
more realistic conditions are considered as these introduce more
complex nonlinear terms into the model equations and the
constraints (Ko, Koseki, & Miyatake, 2004). Numerical optimiza-
tion approaches are applied more and more to the train optimal
control problem due to the increasing computing power nowa-
days. A number of advanced techniques such as fuzzy and genetic
algorithms have been proposed to calculate the optimal reference
trajectory for trains, see, e.g., Chang and Xu (2000), Chang and Sim
(1997), Han et al. (1999), and Ke, Lin, and Lai (2011). But in these
approaches, the optimal solution is not always guaranteed to be
found. On the other hand, multi-parametric quadratic program-
ming is used in Vašak, Baotić, Perić, and Bago (2009) to calculate
the optimal control law for train operations. In that approach, the
nonlinear train model with quadratic resistance is approximated
by a piecewise affine function. Inspired by Vašak et al. (2009), in
Wang, De Schutter, Ning, Groot, and van den Boom (2011) and
Wang, De Schutter, van den Boom, and Ning (2013) we proposed
to solve the optimal trajectory problem as a mixed integer linear
programming (MILP) problem, which can be solved effici-
ently using existing commercial and free solvers (Atamtürk &
Savelsbergh, 2005; Linderoth & Ralphs, 2005) that guarantee
finding the global optimum of the MILP problem.

However, the approaches mentioned above ignore the impact
caused by the signaling systems, e.g., a fixed block signaling (FBS)
system or a moving block signaling (MBS) system. An FBS system
is a block system using fixed block sections, which are protected
by trackside traffic signals. A train cannot enter a block section
until a signal indicates the train may proceed. In an MBS system,
the blocks are defined as safe zones around each train in real time.
Regular communication between trains and zone controllers is
needed for knowing the exact locations and speeds of all trains in
that zone at any given time. An MBS system allows trains to run
closer together compared with an FBS system, thus increasing the
line capacity. Lu and Feng (2011) consider the operation of two
trains on a same line and optimize the trajectory of the following
train with constraints caused by the leading train in an FBS system.
More specifically, a parallel genetic algorithm is used to optimize
the trajectories for the leading train and the following train,
resulting in a lower energy consumption (Lu & Feng, 2011). Gu,
Lu, and Tang (2011) apply nonlinear programming to optimize the
trajectory for the following train. Two situations of the leading
train, i.e. running and stopped, are studied and the corresponding
strategies are proposed for the following train. In addition, Ding
et al. (2009) take the constraints caused by the MBS system into
account and develop an energy-efficient multi-train control algo-
rithm to calculate the optimal trajectories. Three optimal control
regimes, i.e. maximum traction, coasting, and maximum braking,
are adopted in the algorithm and the sequences of these three
regimes are determined by a predefined logic.

In this paper, the constraints caused by the leading train in an
FBS system and an MBS system are formulated. These constraints
are discretized and then recast as linear constraints by piecewise
affine approximations. Thus, they can be easily included into
the MILP problem, which can be solved efficiently compared to
the existing approaches. Furthermore, the greedy approach and
the simultaneous approach are proposed to solve the trajectory
planning problem for multiple trains. We also compare the MILP
approach with the state-of-art optimization approach: pseudospec-
tral methods. Over the last decade, pseudospectral methods have
risen to prominence in the numerical optimal control area (Elnagar,
Kazemi, & Razzaghi, 1995), which were applied to solving optimal
control problems (Gong et al., 2007), such as orbit transfers, lunar
guidance, magnetic control. Therefore, we have selected the pseu-
dospectral method for the comparison of the case study.

The remainder of this paper is structured as follows. In
Section 2, the train model and the MILP approach for a single
train are summarized based on Wang et al. (2013). Section 3
introduces the principle of railway signaling systems, i.e. the FBS
system and the MBS system. Section 4 formulates the constraints
for the following train caused by the leading train under an FBS
system and shows how to include these constraints into the MILP
formulation. The constraints caused by the MBS system are consi-
dered and included in the MILP problem in Section 5. Section 6
illustrates the calculation of the optimal trajectories using the data
from Beijing Yizhuang subway line. We conclude with a short
discussion of some topics for future work in Section 7.

2. Train model and the MILP approach

In this section, the formulation of the optimal control problem
and the MILP approach we proposed in Wang et al. (2013) are
summarized.

2.1. Optimal control problem

A continuous-space mass-point model is often used in the
literature on train optimal control (Franke, Terwiesch, & Meyer,
2003), which can be described as follows (Liu & Golovicher, 2003):

mρ
d ~E
ds

¼ uðsÞ�RbðvÞ�Rlðs; vÞ;
d~t
ds

¼ 1ffiffiffiffiffiffi
2 ~E

p ; ð1Þ

where m is the mass of the train, ρ is a factor to consider the

rotating mass (Hansen & Pachl, 2008), ~E is the kinetic energy per
mass unit, which is equal to 0:5v2, v is the velocity of the train, s is
the position of the train, u is the control variable, i.e. the traction or
braking force, which is bounded by the maximum traction force
umax and the maximum braking force umin, so uminruðsÞrumax,
RbðvÞ is the basic resistance including roll resistance and air
resistance, and Rlðs; vÞ is the line resistance caused by track grade,
curves, and tunnels. See Wang et al. (2013) for more details.

The kinetic energy per mass unit ~E ¼ 0:5v2 and time t are
chosen as the states and the position s is taken as the independent
variable for the train model as in Franke et al. (2003). The
trajectory planning problem for trains can then be formulated as
(Wang et al., 2011)

J ¼
Z send

sstart
maxð0;uðsÞÞ ds ð2Þ

s.t.

uminruðsÞrumax;

0o ~EðsÞr ~EmaxðsÞ;
~EðsstartÞ ¼ ~Estart; ~EðsendÞ ¼ ~Eend;

tðsstartÞ ¼ 0; tðsendÞ ¼ T ; ð3Þ
and the train model (1), where the objective function J is the
energy consumption without regenerative braking; ~EmaxðsÞ is equal
to 0:5V2

maxðsÞ where VmaxðsÞ is the maximum allowable velocity,
which depends on the train characteristics and line conditions,
and as such it is usually a piecewise constant function of the
coordinate s (Khmelnitsky, 2000; Liu & Golovicher, 2003); sstart,
~EðsstartÞ, and tðsstartÞ are the position, the kinetic energy per mass,
and the departure time at the beginning of the route; send, ~EðsendÞ,
and tðsendÞ are the position, the kinetic energy per mass, and
the arrival time at the end of the route, respectively, where
the scheduled running time T is given by the timetable or the

Y. Wang et al. / Control Engineering Practice 22 (2014) 44–56 45



Download English Version:

https://daneshyari.com/en/article/699715

Download Persian Version:

https://daneshyari.com/article/699715

Daneshyari.com

https://daneshyari.com/en/article/699715
https://daneshyari.com/article/699715
https://daneshyari.com

