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a b s t r a c t

This paper investigates the problem of track occupancy detection in distributed settings. Track occupancy
detection determines which tracks are occupied in a railway system. For each track, the Neyman–Pearson
structure is applied to reach the local decision. Globally, it is a multiple hypotheses testing problem. The
Bayesian approach is employed to minimize the probability of the global decision error. Based on the
prior probabilities of multiple hypotheses and the approximation of the receiving operation character-
istic curve of the local detector, a person-by-person optimization method is implemented to obtain the
fusion rule and the local strategies off line. The results are illustrated through an example constructed
from in situ devices.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With respect to the majority of railway systems in China, a
quasi-moving block method is employed to specify the safe zone
of a train (Lu, Tian, Li, & Song, 2008). A key piece of knowledge to
be determined is the set of track segments that are occupied, i.e.,
track occupancy detection. Then the speed restriction curves for
the following trains are calculated accordingly. When there are
misdetections, collisions may happen; additionally, false alarms
may lead to declines of line capacity. Track occupancy detection is
achieved by a set of track circuits. The track circuit is a crucial
device mainly composed of a transmitter–receiver pair and a track
segment. The measurement is the receiving signal at the end of
the track. For each segment, a decision is made locally and
individually, which leads to frequent ambiguities on which tracks
are occupied for the whole line. It means that the false alarm rate
of the line increases greatly. Besides, for the next generation of
railway systems, a moving block method is adopted (Midya &
Thottappillil, 2008). Such a method requires the exact position and
velocity of the train. However, those data are not provided in the
current detection mechanism.

1.1. Related work

To the author's knowledge, track occupancy detection is mainly
achieved in three ways, i.e., Track Circuit, Expert System and Global

Positioning System (GPS). Using track circuits, track occupancy
detection is fulfilled via constant threshold comparisons for sequen-
tial measurements. E.g., for UM71-type track circuits (mainly used
in Europe), an occupancy decision is made when the receiving
signal drops below a prescribed threshold (Debiolles, Oukhellou,
Aknin, & Denoeux, 2006); for ZPW2000A-type track circuits
(used in China), similar comparisons are made except for some
additional logical judgements. In expert systems, graph theory tools
are adopted to generate track occupancy and clearance data
(D'Ariano, 2009). It relies on logistical inference. In recent years,
the GPS technology is utilized to upgrade train control systems
(Beugin & Marais, 2012), where track occupancy detection is
performed according to train position information. Compared with
the others, the track circuit method is the most economical one. It
can be implemented in the existing infrastructures. Besides, the GPS
technology cannot be used for segments in the tunnel. However, the
traditional track circuit approach normally presented a high false
alarm rate, since the detection conducts only “on the spot” and
“now”. Hence, there exist some possible improvements for the
current method: (a) make use of correlations among consecutive
measurements, i.e., a block of data; (b) update the local strategy
dynamically, i.e., the dynamical threshold; (c) combine all the local
decisions to reach a more accurate global decision, i.e., the fusion
rule. In this paper, an improved track occupancy detection approach
via track circuits is investigated.

Based on the existing infrastructures, all the segments conduct
local detections independently and their local decisions are only
allowed to send to a fusion center periodically and synchronously.
Hence, track occupancy detection is considered as a multiple
hypotheses testing problem (to decide which segments are occu-
pied) in distributed settings. In this field, some results have been
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presented. Zhang and Varshney (2001) tried to reduce the com-
putational complexity via transforming the original problem to a
sequence of binary hypothesis testing ones. Zhu, Yuan, Rorres, and
Kam (2004) developed conditions to obtain the correct hypothesis
via asymptotical detections. In this paper, a distributed detection
problem for a moving target is considered. Compared with the
pre-existing literature, this paper concentrates on the dynamical
update mechanism for the local detection strategies and the fusion
rule. It is shown in this paper that the requirement of the
probability of error type I (or type II) for each segment differs
due to the distinct prior probabilities of multiple hypotheses. It is
more likely to assign each segment a different weight.

For each local detection, it is a binary hypothesis testing
problem. In this area, plenty of results have been published (Kay,
1993a). In order to avoid some stronger assumptions, i.e., the prior
probabilities of both hypotheses and the reasonable cost quantities
are supposed to be known, the Neyman–Pearson method and the
Fisherian method are preferably adopted. Actually, these two
methods were motivated by a desire to rid the need to assume
prior probabilities over the possible hypotheses (Lehmann, 1993).
Compared with Fisherian's scheme, to the author's opinion, the
Neyman–Pearson method provided a more rigorous mathematical
support and an explicit formulation of the probability of error type
II. Notice that in this specific problem, the alternative hypothesis is
well defined. Additionally, the detection rate is an important
variable to facilitate generating the local detection strategies and
the fusion rule in the proposed approach. Hence, the Neyman–Pearson
decision theory is employed. It is described as an optimization
problem with constraints. In the framework of the Neyman–Pearson
structure, a Likelihood Ratio Test (LRT) is used to formulate the
detector. Regarding the unknown system parameters, a Generalized
LRT (GLRT) is usually employed (Kay, 1993a). It is the combination of a
Maximum Likelihood Estimate (MLE) and an LRT.

Concerning the fusion rule for the multiple hypotheses testing
problem, the most commonly used Bayesian approach is adopted
(Kay, 1993a), except for the dynamical prior knowledge. To achieve
the optimal detection performance, if possible, some person by
person optimization (PBPO) algorithms are designed in Tang,
Pattipati, and Kleinman (1991) and Helstrom (1995). The PBPO
mechanism deals with the problem via an iterative procedure
rather than solving the simultaneous equations. The overall perfor-
mance is required to improve with every iteration. Hence, the
convergence is guaranteed. However, it does not necessarily lead to
the global optimization. Besides, there are other remarkable

heuristic methods applicable to the design of distributed detections
(Chamberland & Veeravalli, 2007). The saddle-point method is used
to approximate the global probability of error (Aldosari & Moura,
2005). It is assumed that the decision of each local site is indepen-
dent and there is no discrepancy among the local sites. It will be
shown that, in order to optimize the global performance, each local
site is not treated equally. Thus, the saddle point approximation
method cannot be applied directly. Techniques based on empirical
risk minimization and marginalized kernels are proposed by
Nguyen, Wainwright, and Jordan (2005). It is assumed that the joint
distribution of sensor observations is unknown and a set of data
samples is available. Considering the proposed specific problem, the
joint distribution is formulated as a normal distribution. Therefore,
the empirical risk minimization based approach is not perfectly
suitable here.

1.2. Main results

According to Zhao, Li, Guo, and Liu (2009), there are correla-
tions among consecutive measurements when a train passes
through the track . Such correlations can be described as system
dynamics. In contrast, observations in any different time are
independent identical distributed (iid) when the track is empty.
Thus the local detection is formulated as a deterministic signal
detection problem with unknown parameters (the position and
the velocity of the train). In this paper, the GLRT is used to
formulate the local detector. In the stage of the decision fusion,
it will be shown that the key point is to derive the ROC curve.
Since the closed form expression is hard to figure out, the Monte
Carlo simulation and the data fitting technique are employed.

A rail line is composed of large segments. To detect which
segments are occupied is a multiple hypotheses testing problem in
distributed settings. The Bayesian approach is used here to mini-
mize the probability of the global decision error in the entire line
level. The prior probabilities for multiple hypotheses are updated
based on train operation history. They are supposed to be known
to the fusion center. However, they are not available locally.
Considering the fusion rule and the local strategies, a person-by-
person optimization is launched. It reveals that all local detectors
are coupled with one another to reach an optimal solution.

The main contributions of this paper are: (a) for the local
detection, the Neyman–Pearson structure with a dynamical thres-
hold is presented; (b) a dynamically distributed detection scheme

Nomenclature

Hi binary hypotheses for local decision
Hg

i multiple hypotheses for global decision
xik the position of the train head at time k in segment i
A the receiving signal when the track is empty
yik the measurement of the receiving signal at time k in

segment i
wi

k the observation noise at time k in segment i
s2 the variance of the observation noise
v the velocity of the train
U(x) the receiving signal when the track is occupied
x̂ik the maximum likelihood estimate of xik
v̂K the maximum likelihood estimate of v via data block K
γiK the threshold of GLRT for data block K
Q(x) Q ðxÞ ¼ R1

x ð1=
ffiffiffiffiffiffi
2π

p
Þexpð�1

2t
2Þ dt

Pi
FA;K the probability of false alarm for data block K in

segment i

ðPi
FA;K Þn the optimal probability of false alarm for data block K

in segment i
Pi
D;K the probability of detection for data block K in

segment i
sik the state of segment i at time k
gk the state of the group gk ¼ ½s1k ;…; snk �
diK local decision of segment i for data block K
dK decision vector dK ¼ ½d1K ;…; dnK �
d0K the global decision for data block K
P j
k the prior probability that Hg

j is present at time k
RK the Bayesian risk for data block K in distributed

settings
RSk the Bayesian risk using constant threshold method at

time k
RCK the Bayesian risk for data block K in centralized

settings
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